1. Divergent impacts of fertilization regimes on below-ground prokaryotic and eukaryotic communities in the Tibetan Plateau.
- Author
-
Sun S, Liu C, Zhang Y, Yue Y, Sun S, Bai Y, Zhang P, Ravanbakhsh M, Dini-Andreote F, Li R, Zhang Z, Jousset A, Shen Q, A Kowalchuk G, and Xiong W
- Subjects
- Tibet, Ecosystem, Phosphorus analysis, Soil Microbiology, Biomass, Nitrogen, Agriculture, Soil chemistry, Fertilizers, Biodiversity
- Abstract
Chemical nutrient amendment by human activities can lead to environmental impacts contributing to global biodiversity loss. However, the comprehensive understanding of how below- and above-ground biodiversity shifts under fertilization regimes in natural ecosystems remains elusive. Here, we conducted a seven-year field experiment (2011-2017) and examined the effects of different fertilization on plant biodiversity and soil belowground (prokaryotic and eukaryotic) communities in the alpine meadow of the Tibetan Plateau, based on data collected in 2017. Our results indicate that nitrogen addition promoted total plant biomass but reduced the plant species richness. Conversely, phosphorus enrichment did not promote plant biomass and exhibited an unimodal pattern with plant richness. In the belowground realm, distinct responses of soil prokaryotic and eukaryotic communities were observed under fertilizer application. Specifically, soil prokaryotic diversity decreased with nitrogen enrichment, correlating with shifts in soil pH. Similarly, soil eukaryotic diversity decreased with increased phosphorous inputs, aligning with the equilibrium between soil available and total phosphorus. We also established connections between these soil organism communities with above-ground plant richness and biomass. Overall, our study contributes to a better understanding of the sustainable impacts of human-induced nutrient enrichment on the natural environment. Future research should delve deeper into the long-term effects of fertilization on soil health and ecosystem functioning, aiming to achieve a balance between agricultural productivity and environmental conservation., Competing Interests: Declaration of competing interest The authors declare no conflicts of interest., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF