1. Stress adaptation in Tibetan cashmere goats is governed by inherent metabolic differences and manifested through variable cashmere phenotypes.
- Author
-
Zhao B, Suo L, Wu Y, Chen T, Tulafu H, Lu Q, Liu W, Sammad A, Wu C, and Fu X
- Subjects
- Animals, Tibet, Phenotype, Amino Acids, Goats genetics, Proteomics
- Abstract
Tibetan cashmere goats are not only served as a valuable model for studying adaptation to hypoxia and high-altitude conditions but also playing a pivotal role in bolstering local economies through the provision of premium quality cashmere yarn. In this study, we performed an integration and network analysis of metabolomic, transcriptomic and proteomic to elucidate the role of differentially expressed genes, important metabolites, and relevant cellular and metabolic pathways between the fine (average 12.04 ± 0.03 μm of mean fiber diameter) and coarse cashmere (average 14.88 ± 0.05 μm of mean fber diameter) producing by Tibetan cashmere goats. We identified a distinction of 56 and 71 differential metabolites (DMs) between the F and C cashmere groups under positive and negative ion modes, respectively. The KEGG pathway enrichment analysis of these DMs highlighted numerous pathways predominantly involved in amino acid and protein metabolism, as indicated by the finding that the most impactful pathway was the mammalian target of rapamycin (mTOR) signalling pathway. In the F group, we identified a distinctive metabolic profile where amino acid metabolites including serine, histidine, asparagine, glutamic acid, arginine, valine, aspartic acid, tyrosine, and methionine were upregulated, while lysine, isoleucine, glutamine, tryptophan, and threonine were downregulated. The regulatory network and gene co-expression network revealed crucial genes, metabolites, and metabolic pathways. The integrative omics analysis revealed a high enrichment of several pathways, notably encompassing protein digestion and absorption, sphingolipid signalling, and the synaptic vesicle cycle. Within the sphere of our integrative analysis, DNMT3B was identified as a paramount gene, intricately associated with significant proteins such as HMCN1, CPB2, GNG12, and LRP1. Our present study delineated the molecular underpinnings governing the variations in cashmere characteristics by conducting comprehensive analyses across metabolomic, transcriptomic, and proteomic dimensions. This research provided newly insights into the mechanisms regulating cashmere traits and facilitated the advancement of selective breeding programs aimed at cultivating high-quality superfine Tibetan cashmere goats., Competing Interests: Declaration of competing interest The authors declare that there is no conflict of interest., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF