1. On computing the symplectic LLT factorization.
- Author
-
Bujok, Maksymilian, Smoktunowicz, Alicja, and Borowik, Grzegorz
- Subjects
- *
FLOATING-point arithmetic , *MATRICES (Mathematics) - Abstract
We analyze two algorithms for computing the symplectic factorization A = LLT of a given symmetric positive definite symplectic matrix A. The first algorithm W1 is an implementation of the HHT factorization from Dopico and Johnson (SIAM J. Matrix Anal. Appl. 31(2):650–673, 2009), see Theorem 5.2. The second one is a new algorithm W2 that uses both Cholesky and Reverse Cholesky decompositions of symmetric positive definite matrices. We present a comparison of these algorithms and illustrate their properties by numerical experiments in MATLAB. A particular emphasis is given on symplecticity properties of the computed matrices in floating-point arithmetic. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF