Godinez Paredes JM, Rodriguez I, Ren M, Orozco A, Ortiz J, Albanez A, Jones C, Nahleh Z, Barreda L, Garland L, Torres-Gonzalez E, Wu D, Luo W, Liu J, Argueta V, Orozco R, Gharzouzi E, and Dean M
Purpose: Recruit and sequence breast cancer subjects in Guatemalan and US Hispanic populations. Identify optimum strategies to recruit Latin American and Hispanic women into genetic studies of breast cancer., Methods: We used targeted gene sequencing to identify pathogenic variants in 19 familial breast cancer susceptibility genes in DNA from unselected Hispanic breast cancer cases in the US and Guatemala. Recruitment across the US was achieved through community-based strategies. In addition, we obtained patients receiving cancer treatment at major hospitals in Texas and Guatemala., Results: We recruited 287 Hispanic US women, 38 (13%) from community-based and 249 (87%) from hospital-based strategies. In addition, we ascertained 801 Guatemalan women using hospital-based recruitment. In our experience, a hospital-based approach was more efficient than community-based recruitment. In this study, we sequenced 103 US and 137 Guatemalan women and found 11 and 10 pathogenic variants, respectively. The most frequently mutated genes were BRCA1, BRCA2, CHEK2, and ATM. In addition, an analysis of 287 US Hispanic patients with pathology reports showed a significantly higher percentage of triple-negative disease in patients with pathogenic variants (41% vs. 15%). Finally, an analysis of mammography usage in 801 Guatemalan patients found reduced screening in women with a lower socioeconomic status (p < 0.001)., Conclusion: Guatemalan and US Hispanic women have rates of hereditary breast cancer pathogenic variants similar to other populations and are more likely to have early age at diagnosis, a family history, and a more aggressive disease. Patient recruitment was higher using hospital-based versus community enrollment. This data supports genetic testing in breast cancer patients to reduce breast cancer mortality in Hispanic women., (© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)