1. Achieving the third 95 in sub-Saharan Africa: application of machine learning approaches to predict viral failure.
- Author
-
Esber AL, Dear NF, King D, Francisco LV, Sing'oei V, Owuoth J, Maswai J, Iroezindu M, Bahemana E, Kibuuka H, Shah N, Polyak CS, Ake JA, and Crowell TA
- Subjects
- Humans, Cohort Studies, Cross-Sectional Studies, Tanzania, Medication Adherence, Viral Load, Machine Learning, CD4 Lymphocyte Count, HIV Infections drug therapy, Anti-HIV Agents therapeutic use
- Abstract
Objective: Viral failure in people with HIV (PWH) may be influenced by multiple sociobehavioral, clinical, and context-specific factors, and supervised learning approaches may identify novel predictors. We compared the performance of two supervised learning algorithms to predict viral failure in four African countries., Design: Cohort study., Methods: The African Cohort Study is an ongoing, longitudinal cohort enrolling PWH at 12 sites in Uganda, Kenya, Tanzania, and Nigeria. Participants underwent physical examination, medical history-taking, medical record extraction, sociobehavioral interviews, and laboratory testing. In cross-sectional analyses of enrollment data, viral failure was defined as a viral load at least 1000 copies/ml among participants on antiretroviral therapy (ART) for at least 6 months. We compared the performance of lasso-type regularized regression and random forests by calculating area under the curve (AUC) and used each to identify factors associated with viral failure; 94 explanatory variables were considered., Results: Between January 2013 and December 2020, 2941 PWH were enrolled, 1602 had been on antiretroviral therapy (ART) for at least 6 months, and 1571 participants with complete case data were included. At enrollment, 190 (12.0%) had viral failure. The lasso regression model was slightly superior to the random forest in its ability to identify PWH with viral failure (AUC: 0.82 vs. 0.75). Both models identified CD4 + count, ART regimen, age, self-reported ART adherence and duration on ART as important factors associated with viral failure., Conclusion: These findings corroborate existing literature primarily based on hypothesis-testing statistical approaches and help to generate questions for future investigations that may impact viral failure., (Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF