1. A theory of extra radiation in the Universe
- Author
-
Nakayama, Kazunori, Takahashi, Fuminobu, and Yanagida, Tsutomu T.
- Subjects
- *
ASTRONOMICAL observations , *HELIUM isotopes , *COSMIC abundances , *COSMIC background radiation , *NUCLEOSYNTHESIS , *QUANTUM chromodynamics , *PHASE transitions , *CONSTRAINTS (Physics) , *LARGE Hadron Collider - Abstract
Abstract: Recent cosmological observations, such as the measurement of the primordial 4He abundance, CMB, and large scale structure, give preference to the existence of extra radiation component, . The extra radiation may be accounted for by particles which were in thermal equilibrium and decoupled before the big bang nucleosynthesis. Broadly speaking, there are two possibilities: (1) there are about 10 particles which have very weak couplings to the standard model particles and decoupled much before the QCD phase transition; (2) there is one or a few light particles with a reasonably strong coupling to the plasma and it decouples after the QCD phase transition. Focusing on the latter case, we find that a light chiral fermion is a suitable candidate, which evades astrophysical constraints. Interestingly, our scenario predicts a new gauge symmetry at TeV scale, and therefore may be confirmed at the LHC. As a concrete example, we show that such a light fermion naturally appears in the -inspired GUT. [Copyright &y& Elsevier]
- Published
- 2011
- Full Text
- View/download PDF