1. Proteomic Selection of Immunodiagnostic Antigens for Trypanosoma congolense.
- Author
-
Fleming, Jennifer R., Sastry, Lalitha, Crozier, Thomas W. M., Napier, Grant B., Sullivan, Lauren, and Ferguson, Michael A. J.
- Subjects
PROTEOMICS ,BACTERIAL proteins ,TRYPANOSOMA ,PARASITE antigens ,ESCHERICHIA coli ,BOVINE viral diarrhea ,COAT proteins (Viruses) - Abstract
Animal African Trypanosomosis (AAT) presents a severe problem for agricultural development in sub-Saharan Africa. It is caused by several trypanosome species and current means of diagnosis are expensive and impractical for field use. Our aim was to discover antigens for the detection of antibodies to Trypanosoma congolense, one of the main causative agents of AAT. We took a proteomic approach to identify potential immunodiagnostic parasite protein antigens. One hundred and thirteen proteins were identified which were selectively recognized by infected cattle sera. These were assessed for likelihood of recombinant protein expression in E. coli and fifteen were successfully expressed and assessed for their immunodiagnostic potential by ELISA using pooled pre- and post-infection cattle sera. Three proteins, members of the invariant surface glycoprotein (ISG) family, performed favorably and were then assessed using individual cattle sera. One antigen, Tc38630, evaluated blind with 77 randomized cattle sera in an ELISA assay gave sensitivity and specificity performances of 87.2% and 97.4%, respectively. Cattle immunoreactivity to this antigen diminished significantly following drug-cure, a feature helpful for monitoring the efficacy of drug treatment. Author Summary: Animal African Trypanosomosis (AAT) is a set of diseases whereby animals are infected with single-cell parasites that replicate in their bloodstream. The disease in cattle results in weight-loss and death, and AAT is a significant veterinary problem for sub-Saharan Africa. One of the principal trypanosome species responsible for AAT in cattle is Trypanosoma congolense and, although there are drug-treatments for these infections, current diagnostic methods are impractical for field use. Our aim was to discover protein molecules from the parasite to which infected animals make antibodies, to then make these proteins in bacteria and to subsequently demonstrate that they can be used to detect antibodies in cattle serum, thus diagnosing AAT. To discover the diagnostic proteins, we dissolved parasites in a detergent solution and applied them to beads coated with antibodies from infected cattle and to beads coated with antibodies from un-infected cattle. We then compared the proteins bound to each and selected those proteins that were at least 100-fold enriched by the infected cattle antibodies. We refined this list, according to practical and performance considerations, and settled on one protein, called Tc38630. Testing Tc38630 with cattle sera showed that it can detect about nine out of ten AAT infections. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF