1. Temporal and spatial patterns in wind stress and wind stress curl over the central Southern California Bight
- Author
-
Noble, Marlene A., Rosenberger, Kurt J., Rosenfeld, Leslie K., and Robertson, George L.
- Subjects
- *
SUMMER , *PRECIPITATION anomalies , *ENVIRONMENTAL engineering , *GEOLOGICAL basins , *COASTAL archaeology - Abstract
Abstract: In 2001, the U.S. Geological Survey, together with several other federal and municipal agencies, began a series of field programs to determine along and cross-shelf transport patterns over the continental shelves in the central Southern California Bight. As a part of these programs, moorings that monitor winds were deployed off the Palos Verdes peninsula and within San Pedro Bay for six 3–4 month summer and winter periods between 2001 and 2008. In addition, nearly continuous records of winds for this 7-year period were obtained from a terrestrial site at the coast and from a basin site offshore of the long-term coastal site. The mean annual winds are downcoast at all sites. The alongshelf components of wind stress, which are the largest part of the low-frequency wind stress fields, are well correlated between basin, shelf and coastal sites. On average, the amplitude of alongshelf fluctuations in wind stress are 3–4 times larger over the offshore basin, compared to the coastal site, irrespective of whether the fluctuations represent the total, or just the correlated portion of the wind stress field. The curl in the large-scale wind stress tends to be positive, especially in the winter season when the mean wind stress is downcoast and larger at the offshore basin site than at the beach. However, since the fluctuation in wind stress amplitudes are usually larger than the mean, periods of weak negative curl do occur, especially in the summer season when the largest normalized differences in the amplitude of wind stress fluctuations are found in the nearshore region of the coastal ocean. Even though the low-frequency wind stress field is well-correlated over the continental shelf and offshore basins, out to distances of 35km or more from the coast, winds even 10km inshore of the beach do not represent the coastal wind field, at least in the summer months. The seasonal changes in the spatial structures in wind stress amplitudes suggest that an assessment of the amplitude of the responses of coastal ocean processes to wind forcing is complex and that the responses may have significant seasonal structures. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF