1. Studies on the changes in phenological, growth and physiological responses of Silene capitata Kom., an endangered plant in Korea, under climate change treatment.
- Author
-
Park, Jae-Hoon, Han, Young-Sub, Lee, Eung-Pil, Lee, Seung-Yeon, Jeong, Heon-Mo, and You, Young-Han
- Subjects
- *
PLANT phenology , *ENDANGERED plants , *GAS exchange in plants , *CLIMATE change - Abstract
Background: This research aims to study the effect of climate change on the phenology, growth, and physiological traits of Silene capitata Kom., a Korean endangered species II. This study increased CO2 concentration in a closed glass greenhouse, with the daily mean temperature and CO2 concentration respectively being 4.61 °C and 93.63 ppm higher than the outside temperature (ambient conditions, control). The seeds of S. capitata were sown in control and treatment environments in March 2013 while seedlings were transplanted into individual pots in May 2013. To research phenological changes, the first day of the flowering and ripening of the plants transplanted in 2013 and first day of leafing in 2014 were observed. The growth and physiological responses of mature leaves were also studied in 2013. Results: There was no difference in the first day of flowering, but the first day of ripening was earlier in the treatment group than the control group. There was no difference in the number of rosette leaves between the two groups, but leaf area was wider in the treatment group than the control group. Transpiration rate and stomatal conductance were higher in the treatment group than the control group, chlorophyll content decreased, and photosynthetic rate and water use efficiency were the same for both groups. As a result of simple regression analysis among the transpiration rate, stomatal conductance, photosynthetic rate, and water use efficiency, stomatal conductance increased when transpiration rate increased. Stomatal conductance increased with photosynthetic rate in the control unlike in the treatment group. The photosynthetic rate and water use efficiency increased with transpiration rate in the control group unlike in the treatment group. Furthermore, water use efficiency increased as photosynthetic rate increased in both groups. Conclusion: Due to high CO2 concentration, the photosynthetic rate was no longer controlled by the stomata, which appeared to suppress the excessive production of photosynthetic products by reducing chlorophyll content. It is believed that the phenological responses of S. capitata under climate change conditions will advance and that stable growth will be difficult in regions lacking moisture due to the high transpiration rate. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF