1. Recurrent mapping of Hourly Surface Ozone Data (HrSOD) across China during 2005-2020 for ecosystem and human health risk assessment.
- Author
-
Wenxiu Zhang, Di Liu, Hanqin Tian, Naiqin Pan, Ruqi Yang, Wenhan Tang, Jia Yang, Fei Lu, Buddhi Dayananda, Han Mei, Siyuan Wang, and Hao Shi
- Subjects
HEALTH risk assessment ,ECOSYSTEM health ,OZONE ,RECURRENT neural networks ,STANDARD deviations ,OZONE layer ,OZONESONDES - Abstract
Surface ozone is an important air pollutant detrimental to human health and vegetation productivity. Regardless of its short atmospheric lifetime, surface ozone has significantly increased since the 1970s across the Northern Hemisphere, particularly in China. However, high temporal resolution surface ozone concentration data is still lacking in China, largely hindering accurate assessment of associated environmental and human health impacts. Here, we collected hourly ground ozone observations (over 6 million records), meteorological data, remote sensing products, and social-economic information, and applied the Long Short-Term Memory (LSTM) recurrent neural networks to map hourly surface ozone data (HrSOD) at a 0.1° × 0.1° resolution across China during 2005-2020. Benefiting from its advantage in time-series prediction, the LSTM model well captured the spatiotemporal dynamics of observed ozone concentrations, with the sample-based, site-based, and by-year cross-validation coefficient of determination (R²) values being 0.72, 0.65 and 0.71, and root mean square error (RMSE) values being 11.71 ppb (mean = 30.89 ppb), 12.81 ppb (mean = 30.96 ppb) and 11.14 ppb (mean = 31.26 ppb), respectively. Air temperature, atmospheric pressure, and relative humidity were found to be the primary influencing factors. Spatially, surface ozone concentrations were high in northwestern China and low in the Sichuan Basin and northeastern China. Among the four megacity clusters in China, namely the Beijing-Tianjin-Hebei region, the Pearl River Delta, the Yangtze River Delta, and the Sichuan Basin, surface ozone concentration kept decreasing before 2016. However, it tended to increase thereafter in the former three regions, though an abrupt decrease in surface ozone concentrations occurred in 2020. Overall, the HrSOD provides critical information for surface ozone pollution dynamics in China and can support fine-resolution environmental impact and human health risk assessment. The data set is available at https://doi.org/10.5281/zenodo.7415326 (Zhang et al., 2022). [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF