1. Hydrological dynamics of snowmelt induced streamflow in a high mountain catchment of the Pyrenees under contrasting snow accumulation and duration years.
- Author
-
López‐Moreno, J. I., Revuelto, J., González‐Alonso, E., Izagirre, E., Rojas‐Heredia, F., Deschamps‐Berger, C., Bonsoms, J., and Latron, J.
- Subjects
SNOWMELT ,STREAMFLOW ,SNOW cover ,RAINFALL ,WATERSHEDS ,SNOW accumulation ,ELECTRIC conductivity - Abstract
Snowmelt drives a large portion of streamflow in many mountain areas of the world. However, the water paths from snowmelt to the arrival of the water in the streams are still largely unknown. This work analyzes for first time the influence of snowmelt on spring streamflow with different snow accumulation and duration, in an alpine catchment of the central Spanish Pyrenees. This study presents the water balance of the main melting months (May and June). Piezometric values, water temperature, electrical conductivity and isotope data (δ18O) allow a better understanding of the hydrological functioning of the basin during these months. Results of the water balance calculations showed that snow represented on average 73% of the water available for streamflow in May and June while precipitation during these months accounted for only 27%. However, rainfall during the melting period was important to determine the shape of the spring hydrographs. On average, 78% of the sum of both the snow water equivalent (SWE) accumulated at the beginning of May and the precipitation in May and June converted into runoff during the May–June melting period. The average evaporation‐sublimation during the 2 months corresponded to 8.4% of the accumulated SWE and rainfall, so that only a small part of the water input was ultimately available for soil and groundwater storage. When snow cover disappeared from the catchment, soil water storage and streamflow showed a sharp decline. Consequently, streamflow electrical conductivity, temperature and δ18O showed a marked tipping point towards higher values. The fast hydrological response of the catchment to snow and meteorological fluctuations, as well as the marked diel fluctuations of streamflow δ18O during the melting period, strongly suggests short meltwater transit times. As a consequence of this hydrological behaviour, independently of the amount of snow accumulated and of melting date, summer streamflow remained always low, with only small runoff peaks driven by rainfall events. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF