1. CCDC66 frameshift variant associated with a new form of early-onset progressive retinal atrophy in Portuguese Water Dogs.
- Author
-
Murgiano L, Becker D, Spector C, Carlin K, Santana E, Niggel JK, Jagannathan V, Leeb T, Pearce-Kelling S, Aguirre GD, and Miyadera K
- Subjects
- Amino Acid Sequence, Animals, Atrophy, Base Sequence, Cell Nucleus metabolism, Chromosome Mapping, Dogs, Eye Proteins chemistry, Eye Proteins metabolism, Female, Fundus Oculi, Male, Molecular Sequence Annotation, Mutant Proteins, Pedigree, Phenotype, Portugal, Protein Isoforms genetics, Protein Isoforms metabolism, RNA, Messenger genetics, RNA, Messenger metabolism, Retina metabolism, Retina pathology, Eye Proteins genetics, Frameshift Mutation genetics, Retinal Degeneration genetics
- Abstract
Aberrant photoreceptor function or morphogenesis leads to blinding retinal degenerative diseases, the majority of which have a genetic aetiology. A variant in PRCD previously identified in Portuguese Water Dogs (PWDs) underlies prcd (progressive rod-cone degeneration), an autosomal recessive progressive retinal atrophy (PRA) with a late onset at 3-6 years of age or older. Herein, we have identified a new form of early-onset PRA (EOPRA) in the same breed. Pedigree analysis suggested an autosomal recessive inheritance. Four PWD full-siblings affected with EOPRA diagnosed at 2-3 years of age were genotyped (173,661 SNPs) along with 2 unaffected siblings, 2 unaffected parents, and 15 unrelated control PWDs. GWAS, linkage analysis and homozygosity mapping defined a 26-Mb candidate region in canine chromosome 20. Whole-genome sequencing in one affected dog and its obligatory carrier parents identified a 1 bp insertion (CFA20:g.33,717,704_33,717,705insT (CanFam3.1); c.2262_c.2263insA) in CCDC66 predicted to cause a frameshift and truncation (p.Val747SerfsTer8). Screening of an extended PWD population confirmed perfect co-segregation of this genetic variant with the disease. Western blot analysis of COS-1 cells transfected with recombinant mutant CCDC66 expression constructs showed the mutant transcript translated into a truncated protein. Furthermore, in vitro studies suggest that the mutant CCDC66 is mislocalized to the nucleus relative to wild type CCDC66. CCDC66 variants have been associated with inherited retinal degenerations (RDs) including canine and murine ciliopathies. As genetic variants affecting the primary cilium can cause ciliopathies in which RD may be either the sole clinical manifestation or part of a syndrome, our findings further support a role for CCDC66 in retinal function and viability, potentially through its ciliary function.
- Published
- 2020
- Full Text
- View/download PDF