1. [Genetic transformation and fate of heterological DNA in bacterial cells].
- Author
-
Piechowska M
- Subjects
- Bacillus genetics, Bacteriophages genetics, History, 20th Century, Poland, Streptococcus genetics, DNA, Bacterial history, Genetics history, Transformation, Genetic
- Abstract
Secretion of a metabolite enabling Streptococci to undergo genetic transformation was discovered. The metabolite combined with an optimization process were applied to increase the transformation yield about 20-fold. It was observed that large amounts of DNA exert a bactericidal effect, indicating the ability of at least 70% of cells to uptake the polymer. While studying the molecular mechanism of transformation of Bacillus subtilis it was shown that the uptaken DNA forms complexes with bacterial proteins, which hinders determination of its structure. A method was found to dissociate these complexes which enabled to determine the single-stranded structure of the uptaken DNA. Donor DNA fragments incorporated into the host DNA were of about 10 Da. Non-transforming DNA can be uptaken similarly but does not undergo incorporation into the host DNA. The selectivity of Bacillus subtilis receptors was determined towards DNA of phages containing modified bases: uracil, putrescinyl-thymine and its acetylated derivative, 5'-hydroxymethylcytosine and its glycosylated derivative and also towards double-stranded RNA of f2 phage. All these modifications were tolerated by the cellular receptors, with the exception of glycosylation and the 2'-OH group in RNA.
- Published
- 2015