1. Metabolic implications of exposure to wastewater effluent in bluegill sunfish.
- Author
-
Du SNN, Choi JA, McCallum ES, McLean AR, Borowiec BG, Balshine S, and Scott GR
- Subjects
- Animals, Basal Metabolism, Ontario, Liver metabolism, Oxygen metabolism, Perciformes metabolism, Wastewater toxicity, Water Pollutants, Chemical toxicity
- Abstract
Effluent from wastewater treatment plants (WWTP) contains a complex mixture of contaminants and is a major worldwide source of aquatic pollution. We examined the effects of exposure to treated effluent from a municipal WWTP on the metabolic physiology of bluegill sunfish (Lepomis macrochirus). We studied fish that were wild-caught or experimentally caged (28 d) downstream of the WWTP, and compared them to fish that were caught or caged at clean reference sites. Survival was reduced in fish caged at the effluent-contaminated site compared to those caged at the reference site. Resting rates of O
2 consumption (MO2 ) were higher in fish from the contaminated site, reflecting a metabolic cost of wastewater exposure. The increases in routine MO2 did not reduce aerobic scope (difference or quotient of maximal MO2 and resting MO2 ), suggesting that physiological compensations accompanied the metabolic costs of wastewater exposure. Fish exposed to wastewater also had larger hearts and livers. The activity of mitochondrial enzymes (cytochrome c oxidase, citrate synthase) per liver mass was unaltered across treatments, so the increased mass of this organ increased its cumulative oxidative capacity in the fish. Wastewater exposure also reduced glycogen content per liver mass. The effects of caging itself, based on comparisons between fish that were wild-caught or caged at clean sites, were generally subtle and not statistically significant. We conclude that exposure to wastewater effluent invokes a metabolic cost that leads to compensatory physiological adjustments that partially offset the detrimental metabolic impacts of exposure., (Copyright © 2019 Elsevier Inc. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF