1. Composición química del huevo de Tortuga Golfina Lepidochelys olivacea (Testudines: Cheloniidae) y su potencial como recurso alimenticio.
- Author
-
Castro-González, María Isabel and Romo, Fernando Pérez-Gil
- Subjects
- *
BIOCHEMISTRY , *EGGS , *OLIVE ridley turtle , *TURTLES , *CHELONIIDAE , *CHOLESTEROL , *AMINO acids - Abstract
The Olive Ridley is a worldwide distributed species with high nesting production per season, and in La Escobilla Oaxaca, México, there is a 70% of non-hatched eggs that are lost. In order to evaluate their potential use as a source for human and animal food products, their chemical composition was analyzed. Lyophilized egg samples from 25 turtles were obtained and were analyzed following the analytical methods for fatty acids, protein, fat, ash, moisture, amino acids, vitamins, cholesterol and microbiological agents. The analytical composition obtained was (g/100g): moisture (4.7), ash (3.8), protein (53.7), and fat (47.4). The essential amino acid (g aa/100g protein) content was: Ile (4.4), Lys (6.6), Leu (7.4), Met+Cys (8.8), Phe+Tyr (10.8). The vitamin content was: retinol (340µg/100g), cholecalciferol (5.9µg/100g) and 8.6mg/100 tocopherol, 0.3mg/100g thiamine and 1.1mg/100g riboflavin. The total lipid content (TL), fatty acids (FA), and cholesterol (Chol) were divided into three groups based on the weight of the turtle: (TL) (44.3-48.7-49.1g/100g) and (Chol) (518.4-522.5mg/100g-728.7). A total of 17 Saturated FA (SFA), 8 Monounsaturated FA (MUFA) and 11 Polyunsaturated FA (PUFA) were identified. The most abundant SFA (mg/100g) were: C14:0 (445-772), C16:0 (485-1263); MUFA: C16:1 (456-716), C18:1n-9c (904-1754), and PUFA: C20:4n-6 (105-217); two n-3 fatty acids were identified EPA (48-103) and DHA (97-189). There were significant differences (Fisher, p<0.05) for: (Chol), total FA, SFA, MUFA, PUFAs and n-3 (EPA + DHA) FA. It was not detected any microbiological agent. In conclusion, lyophilized L. olivacea eggs are an option for its inclusion in the development of food products as they can be used as a high quality biological protein and n-3 fatty acid source for fortification and enrichment. [ABSTRACT FROM AUTHOR]
- Published
- 2011