1. The Proterozoic Mount Isa Fault Zone, northeastern Australia: is it really a ca. 1.9 Ga terrane-bounding suture?
- Author
-
Bierlein, Frank P. and Betts, Peter G.
- Subjects
- *
OROGENY , *STRUCTURAL geology , *FAULT zones - Abstract
In marked contrast to Palaeoproterozoic Laurentia, the location of sutures and boundaries of discrete crustal fragments amalgamated during Palaeoproterozoic formation of the North Australian Craton remain highly speculative. Interpretations of suture locations have relied heavily on the analysis of regional geophysical datasets because of sparse exposure of rocks of the appropriate age. The Mount Isa Fault Zone has been interpreted as one such Palaeoproterozoic terrane-bounding suture. Furthermore, the coincidence of this fault zone with major shale-hosted massive sulphide Pb–Zn–Ag orebodies has led to speculations that trans-lithospheric faults may be an important ingredient for the development of this deposit type. This study has integrated geophysical and geochemical data to test the statute of the Mount Isa Fault as a terrane-bounding suture. Forward modelling of gravity data shows that basement rocks on either side of the Mount Isa Fault have similar densities. These interpretations are consistent with geochemical observations and Sm–Nd data that suggest that basement lithologies on either side of the Mount Isa Fault are geochemically and isotopically indistinguishable from each other, and that the Mount Isa Fault is unlikely to represent a suture zone that separates different Palaeoproterozoic terranes. Our data indicate that the crustal blocks on both sides of the Mount Isa Fault Zone must have been in within close proximity of each other since the Palaeoproterozoic, and that the Western Fold Belt was part of the (ancestral) North Australian Craton well before the ∼1.89–1.87 Ga Barramundi Orogeny. It appears that deep crustal variations in density may be related to the boundary between a shallowly west-dipping high-density mafic to ultramafic plate and low-density basement rocks. This interpretation in turn impacts on crustal-scale models for the development of shale-hosted massive sulphide Pb–Zn mineralisation, which do not require trans-lithospheric faults to tap deep-seated metal reservoirs and/or mantle plumbing systems. The approach applied herein demonstrates the value of multi-disciplinary investigations to the critical assessment of long-lived Proterozoic fault systems which, in the absence of methodical analysis, are commonly assumed to represent terrane-bounding sutures. [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF