1. Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: A multi-tracer and statistical approach (Bou-Areg region, Morocco).
- Author
-
Re, V., Sacchi, E., Mas-Pla, J., Menció, A., and El Amrani, N.
- Subjects
- *
GROUNDWATER pollution , *GROUNDWATER pollution monitoring , *WATER management , *ENVIRONMENTAL physics , *AQUIFER pollution - Abstract
Groundwater pollution from anthropogenic sources is a serious concern affecting several coastal aquifers worldwide. Increasing groundwater exploitation, coupled with point and non-point pollution sources, are the main anthropogenic impacts on coastal environments and are responsible for severe health and food security issues. Adequate management strategies to protect groundwater from contamination and overexploitation are of paramount importance, especially in arid prone regions, where coastal aquifers often represent the main freshwater resource to sustain human needs. The Bou-Areg Aquifer (Morocco) is a perfect example of a coastal aquifer constantly exposed to all the negative externalities associated with groundwater use for agricultural purposes, which lead to a general increase in aquifer salinization. In this study data on 61 water samples, collected in June and November 2010, were used to: (i) track groundwater composition changes related to the use of irrigation water from different sources, (ii) highlight seasonal variations to assess aquifer vulnerability, and (iii) present a reproducible example of multi-tracer approach for groundwater management in rural coastal areas. Hydrogeochemical results show that Bou-Areg groundwater is characterized by – high salinity, associated with a remarkable increase in bicarbonate content in the crop growing season, due to more intense biological activity in irrigated soils. The coupled multi-tracer and statistical analysis confirms the strong dependency on irrigation activities as well as a clear identification of the processes governing the aquifer’s hydrochemistry in the different seasons. Water Rock Interaction (WRI) dominates the composition of most of groundwater samples in the Low Irrigation season (L-IR) and Agricultural Return Flow (ARF) mainly affects groundwater salinization in the High Irrigation season (H-IR) in the same areas naturally affected by WRI. In the central part of the plain River Recharge (RR) from the Selouane River is responsible for the high groundwater salinity whilst Mixing Processes (MIX) occur in absence of irrigation activities. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF