1. The Red Sea Deep Water is a potent source of atmospheric ethane and propane.
- Author
-
Bourtsoukidis, E., Pozzer, A., Sattler, T., Matthaios, V. N., Ernle, L., Edtbauer, A., Fischer, H., Könemann, T., Osipov, S., Paris, J.-D., Pfannerstill, E. Y., Stönner, C., Tadic, I., Walter, D., Wang, N., Lelieveld, J., and Williams, J.
- Subjects
SEAWATER ,ETHANES ,ATMOSPHERIC chemistry ,TROPOSPHERIC ozone ,ATMOSPHERIC circulation ,EMISSION inventories ,PROPANE ,NATURAL gas - Abstract
Non-methane hydrocarbons (NMHCs) such as ethane and propane are significant atmospheric pollutants and precursors of tropospheric ozone, while the Middle East is a global emission hotspot due to extensive oil and gas production. Here we compare in situ hydrocarbon measurements, performed around the Arabian Peninsula, with global model simulations that include current emission inventories (EDGAR) and state-of-the-art atmospheric circulation and chemistry mechanisms (EMAC model). While measurements of high mixing ratios over the Arabian Gulf are adequately simulated, strong underprediction by the model was found over the northern Red Sea. By examining the individual sources in the model and by utilizing air mass back-trajectory investigations and Positive Matrix Factorization (PMF) analysis, we deduce that Red Sea Deep Water (RSDW) is an unexpected, potent source of atmospheric NMHCs. This overlooked underwater source is comparable with total anthropogenic emissions from entire Middle Eastern countries, and significantly impacts the regional atmospheric chemistry. The Middle East is known to emit large amounts of non-methane hydrocarbon pollutants to the atmosphere, but the sources are poorly characterized. Here the authors discover a new source—deep water in the Red Sea—and calculate that its emissions exceed rates of several high gas-production countries. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF