1. A Deterministic Approach for Approximating the Diurnal Cycle of Precipitation for Use in Large-Scale Hydrological Modeling.
- Author
-
Bohn, Theodore J., Whitney, Kristen M., Mascaro, Giuseppe, and Vivoni, Enrique R.
- Subjects
- *
CIRCADIAN rhythms , *RAINFALL intensity duration frequencies , *METEOROLOGICAL precipitation , *SNOW accumulation , *METEOROLOGICAL observations , *THROUGHFALL - Abstract
Accurate characterization of precipitation P at subdaily temporal resolution is important for a wide range of hydrological applications, yet large-scale gridded observational datasets primarily contain daily total P. Unfortunately, a widely used deterministic approach that disaggregates P uniformly over the day grossly mischaracterizes the diurnal cycle of P, leading to potential biases in simulated runoff Q. Here we present Precipitation Isosceles Triangle (PITRI), a two-parameter deterministic approach in which the hourly hyetograph is modeled with an isosceles triangle with prescribed duration and time of peak intensity. Monthly duration and peak time were derived from meteorological observations at U.S. Climate Reference Network (USCRN) stations and extended across the United States, Mexico, and southern Canada at 6-km resolution via linear regression against historical climate statistics. Across the USCRN network (years 2000–13), simulations using the Variable Infiltration Capacity (VIC) model, driven by P disaggregated via PITRI, yielded nearly unbiased estimates of annual Q relative to simulations driven by observed P. In contrast, simulations using the uniform method had a Q bias of −11%, through overestimating canopy evaporation and underestimating throughfall. One limitation of the PITRI approach is a potential bias in snow accumulation when a high proportion of P falls on days with a mix of temperatures above and below freezing, for which the partitioning of P into rain and snow is sensitive to event timing within the diurnal cycle. Nevertheless, the good overall performance of PITRI suggests that a deterministic approach may be sufficiently accurate for large-scale hydrologic applications. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF