1. Observation of the long-period monotonic seismic waves of the November 11, 2018, Mayotte event by Iranian broadband seismic stations.
- Author
-
Sadeghi, Hossein and Suzuki, Sadaomi
- Subjects
- *
SEISMIC waves , *RAYLEIGH waves , *SEISMIC networks , *PHASE velocity , *SEISMOGRAMS - Abstract
On November 11, 2018, an event generating long-lasting, monotonic long-period surface waves was observed by seismographs around the world. This event occurred at around 09:28 UTC east of the Mayotte Island, in the Indian Ocean off the coast of East Africa. This event is unusual due to the absence of body waves in the seismograms and no feeling of earth shaking by people locally. The purpose of this study is to investigate this unusual event using the waveforms recorded by 26 stations of the Iranian National Broadband Seismic Network. The stations are located at epicentral distances ranging from 4542 to 5772 km north-northeast of the event's epicenter. The arrival of monochromatic long-period signals is visible around 10 UTC in the recordings of all the stations and the signals lasted for more than 30 min. Frequency analysis of the seismograms shows a clear peak at 0.064 Hz (15.6 s/cycle). The maximum amplitude of the transverse components is less than a half of the radial components. This is in agreement with the theoretical radiation pattern of Rayleigh and Love waves at a frequency of 0.06 Hz for a vertical compensated linear vector dipole source mechanism. The average apparent phase velocities were calculated as 3.31 and 2.97 km/s, in the transverse and radial directions, corresponding, respectively, to Love and Rayleigh waves in the frequency range of 0.05–0.07 Hz. A surface wave magnitude of Ms 5.07 ± 0.22 was estimated. Just before the monochromatic signal arrives, there is some dispersion in the surface waves. This observation may suggest a regular earthquake of Ms 4.3 ± 0.11 that triggered the November 11, 2018, event. The difference between the arrival times of the recorded surface waves of the two events is estimated to be less than 31 s, and most likely of ~ 7 s only. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF