1. Whole genome sequencing of Shigella sonnei through PulseNet Latin America and Caribbean: advancing global surveillance of foodborne illnesses.
- Author
-
Baker KS, Campos J, Pichel M, Della Gaspera A, Duarte-Martínez F, Campos-Chacón E, Bolaños-Acuña HM, Guzmán-Verri C, Mather AE, Diaz Velasco S, Zamudio Rojas ML, Forbester JL, Connor TR, Keddy KH, Smith AM, López de Delgado EA, Angiolillo G, Cuaical N, Fernández J, Aguayo C, Morales Aguilar M, Valenzuela C, Morales Medrano AJ, Sirok A, Weiler Gustafson N, Diaz Guevara PL, Montaño LA, Perez E, and Thomson NR
- Subjects
- Caribbean Region epidemiology, DNA, Bacterial analysis, DNA, Bacterial genetics, Disease Outbreaks prevention & control, Disease Outbreaks statistics & numerical data, Drug Resistance, Bacterial, Humans, Latin America epidemiology, Public Health Surveillance, Retrospective Studies, Shigella sonnei drug effects, Whole Genome Sequencing, Dysentery, Bacillary epidemiology, Dysentery, Bacillary microbiology, Foodborne Diseases epidemiology, Foodborne Diseases microbiology, Shigella sonnei genetics
- Abstract
Objectives: Shigella sonnei is a globally important diarrhoeal pathogen tracked through the surveillance network PulseNet Latin America and Caribbean (PNLA&C), which participates in PulseNet International. PNLA&C laboratories use common molecular techniques to track pathogens causing foodborne illness. We aimed to demonstrate the possibility and advantages of transitioning to whole genome sequencing (WGS) for surveillance within existing networks across a continent where S. sonnei is endemic., Methods: We applied WGS to representative archive isolates of S. sonnei (n = 323) from laboratories in nine PNLA&C countries to generate a regional phylogenomic reference for S. sonnei and put this in the global context. We used this reference to contextualise 16 S. sonnei from three Argentinian outbreaks, using locally generated sequence data. Assembled genome sequences were used to predict antimicrobial resistance (AMR) phenotypes and identify AMR determinants., Results: S. sonnei isolates clustered in five Latin American sublineages in the global phylogeny, with many (46%, 149 of 323) belonging to previously undescribed sublineages. Predicted multidrug resistance was common (77%, 249 of 323), and clinically relevant differences in AMR were found among sublineages. The regional overview showed that Argentinian outbreak isolates belonged to distinct sublineages and had different epidemiologic origins., Conclusions: Latin America contains novel genetic diversity of S. sonnei that is relevant on a global scale and commonly exhibits multidrug resistance. Retrospective passive surveillance with WGS has utility for informing treatment, identifying regionally epidemic sublineages and providing a framework for interpretation of prospective, locally sequenced outbreaks., (Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF