1. Phosphorus Availabilities Differ between Cropland and Forestland in Shelterbelt Systems.
- Author
-
Manimel Wadu, Mihiri C.W., Ma, Fengxiang, and Chang, Scott X.
- Subjects
FORESTS & forestry ,FARMS ,LAND use ,PHOSPHORUS ,LANDFORMS ,PLANT nutrients - Abstract
Shelterbelt systems play pivotal roles in providing goods and services to the rural community and the society at large, but phosphorus (P) cycling in shelterbelt systems is poorly studied, while P cycling and availability would be linked to the ecological function and services of shelterbelt systems. This study was conducted to understand how long-term (>30 years) land-use between cropland and forestland in shelterbelt systems affect soil P status. We investigated modified Kelowna (P
Kelowna ) and Mehlich-3 (PMehlich ) extractable P, P fractions (by sequential chemical fractionation), P sorption properties in the 0–10 and 10–30 cm soils and their relationship in six pairs of the cropland areas and adjacent forestland (each pair constitutes a shelterbelt system) in central Alberta. Both PKelowna and PMehlich in the 0–10 cm soil were greater in the cropland than in the forestland. The PKelowna ranged from 10 to 170 and 2 to 57 mg kg−1 within the cropland areas and forestland, respectively. The inorganic P fraction in the 0–30 cm depth was significantly related to PKelowna (R2 = 0.55) and PMehlich (R2 = 0.80) in cropland, but organic P fraction was not significantly related with neither PKelowna nor PMehlich . The iron (Fe) and aluminum (Al) associated P (Fe/Al-P) explained ~50% and ~45% of the variation of PKelowna in the 0–30 cm soil in the cropland and forestland, respectively. The Fe/Al-P and organic P fractions in the 0–10 cm soil were greater in the cropland than in the forestland. The differences in availability and P forms depending on the land use type in shelterbelts suggest that P management needs to be land-use type-specific for shelterbelt systems. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF