1. Microbiome analysis of the restricted bacteria in radioactive element-containing water at the Fukushima Daiichi Nuclear Power Station.
- Author
-
Warashina T, Sato A, Hinai H, Shaikhutdinov N, Shagimardanova E, Mori H, Tamaki S, Saito M, Sanada Y, Sasaki Y, Shimada K, Dotsuta Y, Kitagaki T, Maruyama S, Gusev O, Narumi I, Kurokawa K, Morita T, Ebisuzaki T, Nishimura A, Koma Y, and Kanai A
- Subjects
- Water analysis, Cesium Radioisotopes analysis, RNA, Ribosomal, 16S genetics, RNA, Ribosomal, 16S analysis, Japan, Fukushima Nuclear Accident, Radiation Monitoring, Water Pollutants, Radioactive analysis
- Abstract
A major incident occurred at the Fukushima Daiichi Nuclear Power Station following the tsunami triggered by the Tohoku-Pacific Ocean Earthquake in March 2011, whereby seawater entered the torus room in the basement of the reactor building. Here, we identify and analyze the bacterial communities in the torus room water and several environmental samples. Samples of the torus room water (1 × 10
9 Bq137 Cs/L) were collected by the Tokyo Electric Power Company Holdings from two sampling points between 30 cm and 1 m from the bottom of the room (TW1) and the bottom layer (TW2). A structural analysis of the bacterial communities based on 16S rRNA amplicon sequencing revealed that the predominant bacterial genera in TW1 and TW2 were similar. TW1 primarily contained the genus Limnobacter , a thiosulfate-oxidizing bacterium. γ-Irradiation tests on Limnobacter thiooxidans , the most closely related phylogenetically found in TW1, indicated that its radiation resistance was similar to ordinary bacteria. TW2 predominantly contained the genus Brevirhabdus , a manganese-oxidizing bacterium. Although bacterial diversity in the torus room water was lower than seawater near Fukushima, ~70% of identified genera were associated with metal corrosion. Latent environment allocation-an analytical technique that estimates habitat distributions and co-detection analyses-revealed that the microbial communities in the torus room water originated from a distinct blend of natural marine microbial and artificial bacterial communities typical of biofilms, sludge, and wastewater. Understanding the specific bacteria linked to metal corrosion in damaged plants is important for advancing decommissioning efforts., Importance: In the context of nuclear power station decommissioning, the proliferation of microorganisms within the reactor and piping systems constitutes a formidable challenge. Therefore, the identification of microbial communities in such environments is of paramount importance. In the aftermath of the Fukushima Daiichi Nuclear Power Station accident, microbial community analysis was conducted on environmental samples collected mainly outside the site. However, analyses using samples from on-site areas, including adjacent soil and seawater, were not performed. This study represents the first comprehensive analysis of microbial communities, utilizing meta 16S amplicon sequencing, with a focus on environmental samples collected from the radioactive element-containing water in the torus room, including the surrounding environments. Some of the identified microbial genera are shared with those previously identified in spent nuclear fuel pools in countries such as France and Brazil. Moreover, our discussion in this paper elucidates the correlation of many of these bacteria with metal corrosion., Competing Interests: The authors declare no conflict of interest.- Published
- 2024
- Full Text
- View/download PDF