1. Alteration of Dissimilatory Nitrate Reduction Pathways in the Intertidal Sediment during Macroalgae Blooms.
- Author
-
Senga, Yukiko, Sato, Tsubasa, Shibaki, Kanae, Kuroiwa, Megumi, Nohara, Seiichi, and Suwa, Yuichi
- Subjects
DENITRIFICATION ,MARINE algae ,TIDAL flats ,SEDIMENTS ,CERAMIALES ,ULVA ,SULFATE-reducing bacteria - Abstract
To elucidate the effect of macroalgae blooms on dissimilatory nitrate reduction pathways (denitrification, anammox, and DNRA) in sediments of the hypereutrophic Yatsu tidal flat, eastern Japan, sediment denitrification, anammox, and DNRA rates were measured using a
15 N tracer technique at two sites affected and unaffected by macroalgae (Ulva) blooms and in incubation experiments with and without Ulva. Anammox was insignificant at both sites and in both experiments. The denitrification rate was consistently higher than the DNRA rate, and its contributions to the total dissimilatory nitrate reduction were 82% and 85% at sites affected and unaffected by Ulva, respectively. In a sediment incubation experiment with Ulva, the contribution of DNRA had increased to approximately 30% on day 7, which is when the sulfide concentration was the highest. Sulfide produced by sulfate reduction during macroalgae blooms inhibited denitrification and did not change the DNRA, and consequently increased the DNRA contribution. On day 21, after reaching the peak sulfide concentration during the late macroalgae collapse, the DNRA contribution decreased to 15%. These results indicated that the DNRA contribution was greater during the macroalgae blooms than at the collapse, although denitrification dominated DNRA regardless of the macroalgal status. Therefore, vigorous macroalgae cover and sulfide production under the macroalgae cover had an important impact on the nitrogen dynamics. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF