1. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation.
- Author
-
Bousquet M, Quelen C, Rosati R, Mansat-De Mas V, La Starza R, Bastard C, Lippert E, Talmant P, Lafage-Pochitaloff M, Leroux D, Gervais C, Viguié F, Lai JL, Terre C, Beverlo B, Sambani C, Hagemeijer A, Marynen P, Delsol G, Dastugue N, Mecucci C, and Brousset P
- Subjects
- Cell Transformation, Neoplastic genetics, DNA Primers genetics, Humans, In Situ Hybridization, Fluorescence, Italy, Myeloid Cells physiology, Polymerase Chain Reaction methods, Up-Regulation physiology, Cell Differentiation physiology, Cell Transformation, Neoplastic metabolism, Leukemia, Myeloid, Acute genetics, MicroRNAs metabolism, Myelodysplastic Syndromes genetics, Myeloid Cells cytology, Translocation, Genetic genetics
- Abstract
Most chromosomal translocations in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) involve oncogenes that are either up-regulated or form part of new chimeric genes. The t(2;11)(p21;q23) translocation has been cloned in 19 cases of MDS and AML. In addition to this, we have shown that this translocation is associated with a strong up-regulation of miR-125b (from 6- to 90-fold). In vitro experiments revealed that miR-125b was able to interfere with primary human CD34(+) cell differentiation, and also inhibited terminal (monocytic and granulocytic) differentiation in HL60 and NB4 leukemic cell lines. Therefore, miR-125b up-regulation may represent a new mechanism of myeloid cell transformation, and myeloid neoplasms carrying the t(2;11) translocation define a new clinicopathological entity.
- Published
- 2008
- Full Text
- View/download PDF