1. Species diversity and spatial distribution of CL/VL vectors: assessing bioclimatic effect on expression plasticity of genes possessing vaccine properties isolated from wild-collected sand flies in endemic areas of Iran.
- Author
-
Bordbar, Ali and Parvizi, Parviz
- Subjects
- *
DNA vaccines , *SAND flies , *SPECIES diversity , *GENE expression , *CUTANEOUS leishmaniasis , *GENETIC vectors , *CD25 antigen - Abstract
Background: Leishmaniasis is one of the ten most important neglected tropical diseases worldwide. Understanding the distribution of vectors of visceral and cutaneous leishmaniasis (VL/CL) is one of the significant strategic frameworks to control leishmaniasis. In this study, the extent of the bioclimatic variability was investigated to recognize a rigorous cartographic of the spatial distribution of VL/CL vectors as risk-maps using ArcGIS modeling system. Moreover, the effect of bioclimatic diversity on the fold change expression of genes possessing vaccine traits (SP15 and LeIF) was evaluated in each bioclimatic region using real-time PCR analysis.Methods: The Inverse Distance Weighting interpolation method was used to obtain accurate geography map in closely-related distances. Bioclimatic indices were computed and vectors spatial distribution was analyzed in ArcGIS10.3.1 system. Species biodiversity was calculated based on Shannon diversity index using Rv.3.5.3. Expression fold change of SP15 and LeIF genes was evaluated using cDNA synthesis and RT-qPCR analysis.Results: Frequency of Phlebotomus papatasi was predominant in plains areas of Mountainous bioclimate covering the CL hot spots. Mediterranean region was recognized as an important bioclimate harboring prevalent patterns of VL vectors. Semi-arid bioclimate was identified as a major contributing factor to up-regulate salivary-SP15 gene expression (P = 0.0050, P < 0.05). Also, Mediterranean bioclimate had considerable effect on up-regulation of Leishmania-LeIF gene in gravid and semi-gravid P. papatasi population (P = 0.0109, P < 0.05).Conclusions: The diversity and spatial distribution of CL/VL vectors associated with bioclimatic regionalization obtained in our research provide epidemiological risk maps and establish more effectively control measures against leishmaniasis. Oscillations in gene expression indicate that each gene has its own features, which are profoundly affected by bioclimatic characteristics and physiological status of sand flies. Given the efficacy of species-specific antigens for vaccine production, it is essential to consider bioclimatic factors that have a fundamental role in affecting the regulatory regions of environmentally responsive loci for genes used in vaccine design. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF