1. Nitrate leaching to shallow groundwater systems from agricultural fields with different management practices.
- Author
-
Nila Rekha P, Kanwar RS, Nayak AK, Hoang CK, and Pederson CH
- Subjects
- Agriculture statistics & numerical data, Iowa, Manure analysis, Nitrogen analysis, Water Pollution, Chemical statistics & numerical data, Agriculture methods, Groundwater chemistry, Nitrates analysis, Water Pollutants, Chemical analysis
- Abstract
Monitoring the concentration of NO(3)-N from agricultural fields to the subsurface and shallow ground water resources have received considerable interest worldwide, since agriculture has been identified as a major source of nitrate-nitrogen (NO(3)-N) pollution of groundwater systems in intensively farmed watersheds. A study was conducted to quantify the impact of two tillage practices viz. chisel plow (CP) and no till (NT) with liquid swine manure application on nitrate leaching to the shallow ground water system under corn-soybean production system. This study is part of the long-term field experiments conducted at Iowa State University using completely randomized block design. The NO(3)-N concentrations in the shallow ground water were monitored at three depths viz., a network of subsurface drains at a depth of 1.2 m and piezometers at depths of 1.8 m and 2.4 m. Results of this study showed that the average NO(3)-N concentration during the study period was 16.1 mg l(-1), 14.4 mg l(-1) and 11.8 mg l(-1) at 1.2 m, 1.8 m and 2.4 m depths, respectively implying significant amount of NO(3)-N leaching past the subsurface drain depth of 1.2 m into the shallow groundwater but the NO(3)-N concentration decreases with the depth. The NO(3)-N concentrations in shallow groundwater were significantly higher under the chisel plow system in comparison with the no till method of tillage. Fall application of liquid swine manure caused more leaching in comparison with the spring application. Higher NO(3)-N concentration was observed under corn in comparison with the soybean plots. An in-depth analysis of the data showed a definite relationship between the NO(3)-N concentration in subsurface drain water at a depth of 1.2 m and shallow groundwater at depths of 1.8 m and 2.4 m depths.
- Published
- 2011
- Full Text
- View/download PDF