1. Whole-Genome-Sequence-Based Classification of Xanthomonas euvesicatoria pv. eucalypti and Computational Analysis of the Type III Secretion System.
- Author
-
Choudhary, Manoj, Minsavage, Gerald V., Goss, Erica M., Timilsina, Sujan, Coutinho, Teresa A., Vallad, Gary E., Paret, Mathews L., and Jones, Jeffrey B.
- Subjects
- *
EUCALYPTUS , *XANTHOMONAS , *ANNUALS (Plants) , *SECRETION , *TOMATOES , *CLASSIFICATION - Abstract
Xanthomonas spp. infect a wide range of annual and perennial plants. Bacterial blight in young seedlings of Eucalyptus spp. in Indonesia was originally identified as X. perforons. However, these strains failed to elicit a hypersensitive response (HR) on either tomatoes or peppers. Two of the strains, EPK43 and BCC 972, when infiltrated into tomato and pepper leaves, failed to grow to significant levels in comparison with well-characterized X. euvesicatoria pv. perforons (Xp) strains. Furthermore, spray inoculation of 'Bonny Best' tomato plants with abacterial suspension of the Eucalyptus strains resulted in no obvious symptoms. We sequenced the whole genomes of eight strains isolated from two Eucalyptus species between 2007 and 2015. The strains had average nucleotide identities (ANIs) of at least 97.8 with Xp and X. euvesicatoria pv. euvesicatoria (Xeu) strains, both of which are causal agents of bacterial spot of tomatoes and peppers. A comparison of the Eucalyptus strains revealed that the ANI values were >99.99% with each other. Core genome phylogeny clustered all Eucalyptus strains with X. euvesicatoria pv. rosa. They formed separate clades, which included X. euvesicatoria pv. alangii, X. euvesicatoria pv. citrumelonis, and X. euvesicatoria pv. alfalfae. Based on ANI, phylogenetic relationships, and pathogenicity, we designated these Eucalyptus strains as X. euvesicatoria pv. eucalypti (Xee). Comparative analysis of sequenced strains provided unique profiles of type III secretion effectors. Core effector XopD, present in all pathogenic Xp and Xeu strains, was absent in theXee strains. Comparison of the hrp clusters of Xee, Xp, and Xeu genomes revealed that HrpE in Xee strains was very different from that in Xp and Xeu. To determine if it was functional, we deleted the gene and complemented with the Xee hrpE, confirming it was essential for secretion of type III effectors. HrpE has a hypervariable N-terminus in Xanthomonas spp., in which the N-terminus of Xee strains differs significantly from those of Xeu and Xp strains. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF