1. Molecular surveillance over 14 years confirms reduction of Plasmodium vivax and falciparum transmission after implementation of Artemisinin-based combination therapy in Papua, Indonesia.
- Author
-
Pava, Zuleima, Puspitasari, Agatha M., Rumaseb, Angela, Handayuni, Irene, Trianty, Leily, Utami, Retno A. S., Tirta, Yusrifar K., Burdam, Faustina, Kenangalem, Enny, Wirjanata, Grennady, Kho, Steven, Trimarsanto, Hidayat, Anstey, Nicholas M., Poespoprodjo, Jeanne Rini, Noviyanti, Rintis, Price, Ric N., Marfurt, Jutta, and Auburn, Sarah
- Subjects
PLASMODIUM vivax ,PLASMODIUM falciparum ,GENETIC epidemiology ,TRYPANOSOMA ,DRUG control ,MALARIA - Abstract
Genetic epidemiology can provide important insights into parasite transmission that can inform public health interventions. The current study compared long-term changes in the genetic diversity and structure of co-endemic Plasmodium falciparum and P. vivax populations. The study was conducted in Papua Indonesia, where high-grade chloroquine resistance in P. falciparum and P. vivax led to a universal policy of Artemisinin-based Combination Therapy (ACT) in 2006. Microsatellite typing and population genetic analyses were undertaken on available isolates collected between 2004 and 2017 from patients with uncomplicated malaria (n = 666 P. falciparum and n = 615 P. vivax). The proportion of polyclonal P. falciparum infections fell from 28% (38/135) before policy change (2004–2006) to 18% (22/125) at the end of the study (2015–2017); p<0.001. Over the same period, polyclonal P. vivax infections fell from 67% (80/119) to 35% (33/93); p<0.001. P. falciparum strains persisted for up to 9 years compared to 3 months for P. vivax, reflecting higher rates of outbreeding in the latter. Sub-structure was observed in the P. falciparum population, but not in P. vivax, confirming different patterns of outbreeding. The P. falciparum population exhibited 4 subpopulations that changed in frequency over time. Notably, a sharp rise was observed in the frequency of a minor subpopulation (K2) in the late post-ACT period, accounting for 100% of infections in late 2016–2017. The results confirm epidemiological evidence of reduced P. falciparum and P. vivax transmission over time. The smaller change in P. vivax population structure is consistent with greater outbreeding associated with relapsing infections and highlights the need for radical cure to reduce recurrent infections. The study emphasizes the challenge in disrupting P. vivax transmission and demonstrates the potential of molecular data to inform on the impact of public health interventions. Author summary: Genetic epidemiology is gaining widespread interest as a tool that can enhance conventional malaria surveillance. However, few studies have assessed the utility of molecular analyses in quantifying long-term changes in malaria transmission. The current study compared changes in the genetic diversity and structure of co-endemic P. vivax and P. falciparum populations sampled over 14 years (2004–2017) in Papua Indonesia, during which the incidence of both P. falciparum and P. vivax malaria halved. The study found larger genetic changes in P. falciparum than P. vivax, reflecting a greater impact of local interventions, including the implementation of a new drug policy (universal Artemisinin-Based Combined Therapy) in 2006, on P. falciparum. Both species exhibited decreasing complexity of infections over time, consistent with declining transmission. However, the P. falciparum population showed greater evidence of a recent bottleneck than the P. vivax population. Four subpopulations were observed amongst the P. falciparum isolates, one of which predominated in 2016–2017, potentially reflecting recent adaptation. The results concur with epidemiological studies performed in the same area, that found declining transmission in both species, with less impact on P. vivax infections. Radical cure to treat the dormant liver stages may enable larger reductions in P. vivax transmission. The results support the great potential of molecular surveillance in complementing traditional malariometric approaches. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF