1. Mutational screening of Greek patients with axonal Charcot-Marie-Tooth disease using targeted next-generation sequencing: Clinical and molecular spectrum delineation.
- Author
-
Kontogeorgiou Z, Kartanou C, Rentzos M, Kokotis P, Anagnostou E, Zambelis T, Chroni E, Dinopoulos A, Panas M, Koutsis G, and Karadima G
- Subjects
- Humans, Greece, Mutation, High-Throughput Nucleotide Sequencing, Ubiquitin-Protein Ligases genetics, Charcot-Marie-Tooth Disease genetics, Charcot-Marie-Tooth Disease epidemiology
- Abstract
Background and Aims: Axonal forms of Charcot-Marie-Tooth disease (CMT) are classified as CMT2, distal hereditary motor neuropathy (dHMN) or hereditary sensory neuropathy (HSN) and can be caused by mutations in over 100 genes. We presently aimed to investigate for the first time the genetic landscape of axonal CMT in the Greek population., Methods: Sixty index patients with CMT2, dHMN or HSN were screened by a combination of Sanger sequencing (GJB1) and next-generation sequencing custom-made gene panel covering 24 commonly mutated genes in axonal CMT., Results: Overall, 20 variants classified as pathogenic or likely pathogenic were identified in heterozygous state in 20 index cases, representing 33.3% of the cohort. Of these, 14 were known pathogenic/likely pathogenic and six were designated as such according to ACMG classification, after in silico evaluation, testing for familial segregation and further literature review. The most frequently involved genes were GJB1 (11.7%), MPZ (5%) and MFN2 (5%), followed by DNM2 (3.3%) and LRSAM1 (3.3%). Single cases were identified with mutations in BSCL2, HSPB1 and GDAP1., Interpretation: A wide phenotypic variability in terms of severity and age of onset was noted. Given the limited number of genes tested, the diagnostic yield of the present panel compares favourably with studies in other European populations. Our study delineates the genetic and phenotypic variability of inherited axonal neuropathies in the Greek population and contributes to the pathogenicity characterization of further variants linked to axonal neuropathies., (© 2023 Peripheral Nerve Society.)
- Published
- 2023
- Full Text
- View/download PDF