1. Large differences in plant nitrogen supply in German and Swedish forests – Implications for management.
- Author
-
Högberg, Peter, Wellbrock, Nicole, Högberg, Mona N., Mikaelsson, Hilda, and Stendahl, Johan
- Subjects
FOREST management ,FORESTS & forestry ,TREE growth ,FOREST regeneration ,FOREST productivity - Abstract
• We studied the soil C/N ratio, a metric of plant N supply, from N. Sweden to Germany. • The plant N supply increases substantially from N. Sweden to Germany in the south. • Forest management operations can cause losses of N from N–rich soils. • Where soils are N–poor, management needs to enhance the N supply to tree seedlings. • The results speak against the use of a single management method in Sweden and Germany. In European forests, plant N supply varies from regions where N deposition is negligible and a low natural N supply limits production to regions where high N deposition adds to a high natural N supply. Here, we ask if the differences in N supply are too large to make one system of management for wood production, continuous–cover forestry or rotational forestry, optimal across these conditions. We analyzed the C/N ratio in c. 8400 samples of surficial soil layers along a 2400 km long transect through Sweden and Germany to obtain a quantitative description of differences in plant N supply. We discuss the differences in relation to forest management, especially evidence that soil C/N ratios below 25 are associated with higher N supply, risks of leaching of nitrate, and gaseous losses of N 2 O, whereas ratios above 25 are associated with a tighter N cycle and an N limitation to tree growth. The percent soil with C/N ratios above 25 declines from 91 in N. Norrland in Sweden to 26 in Germany. Simultaneously, mor soils (with a distinct organic layer on top of the mineral soil) decline from 95% to 16%, while mull soils (in which organic matter and mineral particles are mixed) increase from 1% to 40%. However, low C/N ratios also occur in the north, where we find the largest width in C/N ratios from 16 in mull soils to 36 in mor soils, which compares with a variation in Germany from 17 to 27. Soils under conifers generally have higher C/N ratios than soils under broadleaves, but our survey data cannot support that the trees are the sole cause of this pattern. Very low C/N ratios occur in conifer–dominated forests in the north. The high incidence (74%) of C/N ratios below 25 indicates that forest management in Germany should use methods, which minimize the risk of N losses. Continuous–cover forestry may fulfill that objective. In the north with 9% of the soils below this threshold, risks of N losses are small. There, rotational forestry involving clear–felling alleviates the competition for soil N from larger trees allowing successful regeneration of tree seedlings. From the perspective of interactions between plant N supply and management of forests for wood production, no single management system seems optimal along this large gradient. We propose that research on forest management systems should address the importance of N supply. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF