1. Chemical mass balance of 300 0C non-volatile particles at the tropospheric research site Melpitz, Germany.
- Author
-
Poulain, L., Birmili, W., Canonaco, F., Crippa, M., Wu, Z. J., Nordmann, S., Spindler, G., Prévôt, A. S. H., Wiedensohler, A., and Herrmann, H.
- Subjects
MASS budget (Geophysics) ,EVAPORATION (Meteorology) ,TROPOSPHERE ,AERODYNAMICS ,SOOT - Abstract
In the fine-particle mode (aerodynamic diameter < 1 pm) non-volatile material has been associated with black carbon (BC) and low-volatile organics and, to a lesser extent, with sea salt and mineral dust. This work analyzes nonvolatile particles at the tropospheric research station Melpitz (Germany), combining experimental methods such as a mobility particle-size spectrometer (3-800nm), a thermodenuder operating at 300 °C, a multi-angle absorption photometer (MAAP), and an aerosol mass spectrometer (AMS). The data were collected during two atmospheric field experiments in May-June 2008 as well as February-March 2009. As a basic result, we detected average non-volatile particlevolume fractions of 11 ± 3% (2008) and 17 ± 8% (2009). In both periods, BC was in close linear correlation with the nonvolatile fraction, but not sufficient to quantitatively explain the non-volatile particle mass concentration. Based on the assumption that BC is not altered by the heating process, the non-volatile particle mass fraction could be explained by the sum of black carbon (47% in summer, 59% in winter) and a non-volatile organic contribution estimated as part of the low-volatility oxygenated organic aerosol (LV-OOA) (53% in summer, 41% in winter); the latter was identified from AMS data by factor analysis. Our results suggest that LVOOA was more volatile in summer (May-June 2008) than in winter (February-March 2009) which was linked to a difference in oxidation levels (lower in summer). Although carbonaceous compounds dominated the sub-pm non-volatile particle mass fraction most of the time, a cross-sensitivity to partially volatile aerosol particles of maritime origin could be seen. These marine particles could be distinguished, however from the carbonaceous particles by a characteristic particle volume-size distribution. The paper discusses the uncertainty of the volatility measurements and outlines the possible merits of volatility analysis as part of continuous atmospheric aerosol measurements. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF