1. Phosphorus Translocation by Red Deer on a Subalpine Grassland in the Central European Alps.
- Author
-
Schütz, Martin, Risch, Anita C., Achermann, Gérald, Thiel-Egenter, Conny, Page-Dumroese, Deborah S., Jurgensen, Martin F., and Edwards, Peter J.
- Subjects
- *
ECOLOGICAL succession , *GRAZING , *RED deer , *PHOSPHORUS , *RANGELANDS , *MOUNTAINS , *BIOMASS , *GRASSLANDS , *ECOLOGY - Abstract
We examined the role of red deer ( Cervus elaphus L.) in translocating phosphorus (P) from their preferred grazing sites (short-grass vegetation on subalpine grasslands) to their wider home range in a subalpine grassland ecosystem in the Central European Alps. Phosphorus was used because it is the limiting nutrient in these grasslands. When we compared P removal of aboveground biomass due to grazing with P input due to the deposit of feces on a grid of 268 cells (20 m × 20 m) covering the entire grassland, we detected distinct spatial patterns: the proportion of heavily grazed short-grass vegetation increased with increasing soil-P pool, suggesting that red deer preferably grazed on grid cells with a higher soil-P pool. Biomass consumption related to increased proportion of short-grass vegetation, and therefore P removal, increased with increasing soil-P pool. However, within the two vegetation types (short-grass and tall-grass), consumption was independent from soil-P pool. In addition, P input rates from defecation increased with increasing soil-P pool, resulting in a constant mean net P loss of 0.083 kg ha−1 y−1 (0.03%–0.07% of soil-P pool) independent of both soil-P pool and vegetation type. Thus, there was no P translocation between grid cells with different soil-P pools or between short-grass and tall-grass vegetation. Based on these results, it is likely that the net rate of P loss is too small to explain the observed changes in vegetation composition from tall-herb/meadow communities to short-grass and from tall-grass to short-grass on the grassland since 1917. Instead, we suggest that the grazing patterns of red deer directly induced succession from tall-herb/meadow communities to short-grass vegetation. Yet, it is also possible that long-term net soil-P losses indirectly drive plant succession from short-grass to tall-grass vegetation, because nutrient depletion could reduce grazing pressure in short-grass vegetation and enable the characteristic tall-grass species Carex sempervirens Vill. to establish. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF