1. The variability of mass concentrations and source apportionment analysis of equivalent black carbon across urban Europe.
- Author
-
Savadkoohi M, Pandolfi M, Reche C, Niemi JV, Mooibroek D, Titos G, Green DC, Tremper AH, Hueglin C, Liakakou E, Mihalopoulos N, Stavroulas I, Artiñano B, Coz E, Alados-Arboledas L, Beddows D, Riffault V, De Brito JF, Bastian S, Baudic A, Colombi C, Costabile F, Chazeau B, Marchand N, Gómez-Amo JL, Estellés V, Matos V, van der Gaag E, Gille G, Luoma K, Manninen HE, Norman M, Silvergren S, Petit JE, Putaud JP, Rattigan OV, Timonen H, Tuch T, Merkel M, Weinhold K, Vratolis S, Vasilescu J, Favez O, Harrison RM, Laj P, Wiedensohler A, Hopke PK, Petäjä T, Alastuey A, and Querol X
- Subjects
- Environmental Monitoring methods, Aerosols analysis, Europe, Seasons, Soot analysis, Carbon analysis, Particulate Matter analysis, Air Pollutants analysis, Air Pollution analysis
- Abstract
This study analyzed the variability of equivalent black carbon (eBC) mass concentrations and their sources in urban Europe to provide insights into the use of eBC as an advanced air quality (AQ) parameter for AQ standards. This study compiled eBC mass concentration datasets covering the period between 2006 and 2022 from 50 measurement stations, including 23 urban background (UB), 18 traffic (TR), 7 suburban (SUB), and 2 regional background (RB) sites. The results highlighted the need for the harmonization of eBC measurements to allow for direct comparisons between eBC mass concentrations measured across urban Europe. The eBC mass concentrations exhibited a decreasing trend as follows: TR > UB > SUB > RB. Furthermore, a clear decreasing trend in eBC concentrations was observed in the UB sites moving from Southern to Northern Europe. The eBC mass concentrations exhibited significant spatiotemporal heterogeneity, including marked differences in eBC mass concentration and variable contributions of pollution sources to bulk eBC between different cities. Seasonal patterns in eBC concentrations were also evident, with higher winter concentrations observed in a large proportion of cities, especially at UB and SUB sites. The contribution of eBC from fossil fuel combustion, mostly traffic (eBC
T ) was higher than that of residential and commercial sources (eBCRC ) in all European sites studied. Nevertheless, eBCRC still had a substantial contribution to total eBC mass concentrations at a majority of the sites. eBC trend analysis revealed decreasing trends for eBCT over the last decade, while eBCRC remained relatively constant or even increased slightly in some cities., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF