1. Evaluation of MODIS surrogates for meteorological humidity data in east Africa.
- Author
-
Lin, Shengpan, Moore, Nathan J., Messina, Joseph P., and Wu, Jiaping
- Subjects
SATELLITE-based remote sensing ,MODIS (Spectroradiometer) ,REMOTE-sensing images ,METEOROLOGICAL stations ,NORMALIZED difference vegetation index ,REGRESSION analysis - Abstract
Satellite remote-sensing technology has shown promising results in characterizing the environment in which plants and animals thrive. Scientists, biologists, and epidemiologists are adopting remotely sensed imagery to compensate for the paucity of weather information measured by weather stations. With measured humidity from three stations as baselines, our study reveals that normalized difference vegetation index (NDVI) and atmospheric saturation deficit at the 780 hPa pressure level (DMODIS), both of which were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, were significantly correlated with station saturation deficits (Dstn) (
r = 0.42–0.63,p < 0.001). These metrics have the potential to estimate saturation deficits over east Africa. Four to nine days of lags were found in the NDVI responding toDstn. For the daily estimation ofDstn,DMODISyielded better performance than the NDVI. However, both of them poorly explained variation in dailyDstnusing simple regression models (adj.R2 = 0.17–0.39). When the estimation temporal scale was changed to 16 days, performance was similar, and both were better than daily estimations. ForDstnestimation at coarser geographic scales, given that many factors such as soil, vegetation, slope, aspect, and wind speed might complicate NDVI response lags and model construction,DMODISis preferable as a proxy to saturation deficit over ground due to its simple relationship withDstn. [ABSTRACT FROM AUTHOR] - Published
- 2013
- Full Text
- View/download PDF