1. Ophicalcites from the Upper Tectonic Unit on Tinos, Cyclades, Greece: mineralogical, geochemical and isotope evidence for their origin and evolution.
- Author
-
Mavrogonatos, C., Magganas, A., Kati, M., Bröcker, M., and Voudouris, P.
- Subjects
- *
ISOTOPE exchange reactions , *ISOTOPES , *CARBON isotopes , *ANTIGORITE , *MINERALS , *OXYGEN isotopes - Abstract
Ophicalcites exposed on the island of Tinos, Greece, occur as ellipsoidal bodies within greenschist-facies phyllites of the Upper Cycladic Unit. Close to their outcrops, blocks of serpentinites, metabasic rocks and metasediments were identified, implying a tectonically dismembered ophiolitic sequence in the study area. The ophicalcites comprise brecciated serpentinites cemented by calcite. Based on textural, mineralogical and deformation features, five ophicalcite varieties were discriminated, reflecting calcite precipitation, sedimentary features and increasing brecciation. Serpentinitic fragments comprise antigorite, while Cr-spinel, magnetite, talc and chlorite are accessory minerals. Carbonate veins consist of calcite and minor dolomite, talc, chlorite, and rarely epidote. Bulk rock chemical compositions and Cr-spinel mineral composition point towards a supra-subduction environment. Carbon and oxygen isotope ratios of calcite imply precipitation from mixed marine and hydrothermal fluids, followed by isotope exchange due to late, greenschist-facies overprint. The Tinos ophicalcites record intraoceanic exhumation of the ultramafics at the seafloor, where faulting and serpentinization caused an extensive network of fractures, healed by carbonates. Such intraoceanic deformation can be attributed either to obduction tectonics expressed by thrusting of oceanic piles, or to transpressional(?) transform faults, or more probably to slip along detachment fault of an oceanic core complex. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF