1. Air stagnation in China: Spatiotemporal variability and differing impact on PM 2.5 and O 3 during 2013-2018.
- Author
-
Wang L, Li M, Wang Q, Li Y, Xin J, Tang X, Du W, Song T, Li T, Sun Y, Gao W, Hu B, and Wang Y
- Subjects
- China, Cities, Environmental Monitoring methods, Particulate Matter analysis, Seasons, Air Pollutants analysis, Air Pollution analysis
- Abstract
In recent years, winter PM
2.5 and summer O3 pollution which often occurred with air stagnation condition has become a major concern in China. Thus, it is imperative to understand the air stagnation distribution in China and elucidate its impact on air pollution. In this study, three air stagnation indices were calculated according to atmospheric thermal and dynamics parameters using ERA5 data. Two improved indices were more suitable in China, and they displayed similar characteristics: most of the air stagnant days were found in winter, and seasonal distributions showed substantial regional heterogeneity. During stagnation events, flat west or northwest winds at 500 hPa and high pressure at surface dominated, with high relative humidity (RH) and temperature (T), weak winds in most regions. The pollutants concentrations on stagnant days were higher than those on non-stagnant days in most studied areas, with the largest difference of the 90th percentiles of maximum daily 8-h average (MDA8) O3 up to 62.2 μg m-3 in Pearl River Delta (PRD) and PM2.5 up to 95.8 μg m-3 in North China Plain (NCP). During the evolution of stagnation events, the MDA8 O3 concentrations showed a significant increase (6.0 μg m-3 day-1 ) in PRD and a slight rise in other regions; the PM2.5 concentrations and the frequency of extreme PM2.5 days increased, especially in NCP. Furthermore, O3 was simultaneously controlled by temperature and stagnation except for Xinjiang (XJ), with the average growth rate of 19.5 μg m-3 every 3 °C at 19 °C-31 °C. PM2.5 was dominated by RH and stagnation in northern China while mainly controlled by stagnation in southern China. Notably, the extremes of summer O3 (winter PM2.5 ) pollution was most associated with air stagnation and T at 25 °C-31 °C (air stagnation and RH >50%). The results are expected to provide important reference information for air pollution control in China., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021. Published by Elsevier B.V.)- Published
- 2022
- Full Text
- View/download PDF