1. Spatio-temporal dynamics of dengue-related deaths and associated factors.
- Author
-
Santana LMR, Baquero OS, Maeda AY, Nogueira JS, and Chiaravalloti Neto F
- Subjects
- Aged, Bayes Theorem, Brazil epidemiology, Cities, Humans, Spatio-Temporal Analysis, Dengue epidemiology
- Abstract
Since the reintroduction of dengue viruses in 1987, Sao Paulo State (SP), Brazil, has experienced recurrent epidemics in a growing number of municipalities, each time with more cases and deaths. In the present study, we investigated the spatio-temporal dynamics of dengue-related deaths and associated factors in SP. This was an ecological study with spatial and temporal components, based on notified dengue-related deaths in the municipalities of SP between 2007 and 2017. A latent Gaussian Bayesian model with Poisson probability distribution was used to estimate the standardized mortality ratios (SMR) for dengue and relative risks (RR) for the socioeconomic, demographic, healthcare-related, and epidemiological factors considered. Epidemiological factors included the annual information on the number of circulating serotypes. A total of 1,019 dengue-related deaths (0.22 per 100,000 inhabitant-years) between 2007 and 2017 were confirmed in SP by laboratory testing. Mortality increased with age, peaking at 70 years or older (1.41 deaths per 100,000 inhabitant-years). Mortality was highest in 2015, and the highest SMR values were found in the North, Northwest, West, and coastal regions of SP. An increase of one circulating serotype, one standard deviation in the number of years with cases, and one standard deviation in the degree of urbanization were associated with increases of 75, 35, and 45% in the risk of death from dengue, respectively. The risk of death from dengue increased with age, and the distribution of deaths was heterogeneous in space and time. The positive relationship found between the number of dengue serotypes circulating and years with cases at the municipality/micro-region level indicates that this information can be used to identify risk areas, intensify surveillance and control measures, and organize healthcare to better respond to this disease.
- Published
- 2022
- Full Text
- View/download PDF