1. Developing a forecasting model for cholera incidence in Dhaka megacity through time series climate data.
- Author
-
Daisy SS, Saiful Islam AKM, Akanda AS, Faruque ASG, Amin N, and Jensen PKM
- Subjects
- Bangladesh, Cities, Forecasting, Humans, Incidence, Seasons, Cholera epidemiology, Climate, Models, Theoretical
- Abstract
Cholera, an acute diarrheal disease spread by lack of hygiene and contaminated water, is a major public health risk in many countries. As cholera is triggered by environmental conditions influenced by climatic variables, establishing a correlation between cholera incidence and climatic variables would provide an opportunity to develop a cholera forecasting model. Considering the auto-regressive nature and the seasonal behavioral patterns of cholera, a seasonal-auto-regressive-integrated-moving-average (SARIMA) model was used for time-series analysis during 2000-2013. As both rainfall (r = 0.43) and maximum temperature (r = 0.56) have the strongest influence on the occurrence of cholera incidence, single-variable (SVMs) and multi-variable SARIMA models (MVMs) were developed, compared and tested for evaluating their relationship with cholera incidence. A low relationship was found with relative humidity (r = 0.28), ENSO (r = 0.21) and SOI (r = -0.23). Using SVM for a 1 °C increase in maximum temperature at one-month lead time showed a 7% increase of cholera incidence (p < 0.001). However, MVM (AIC = 15, BIC = 36) showed better performance than SVM (AIC = 21, BIC = 39). An MVM using rainfall and monthly mean daily maximum temperature with a one-month lead time showed a better fit (RMSE = 14.7, MAE = 11) than the MVM with no lead time (RMSE = 16.2, MAE = 13.2) in forecasting. This result will assist in predicting cholera risks and better preparedness for public health management in the future.
- Published
- 2020
- Full Text
- View/download PDF