1. Machine learning for buildings' characterization and power-law recovery of urban metrics.
- Author
-
Krayem A, Yeretzian A, Faour G, and Najem S
- Subjects
- Cities, Electricity, Machine Learning, Models, Theoretical, Urban Renewal
- Abstract
In this paper we focus on a critical component of the city: its building stock, which holds much of its socio-economic activities. In our case, the lack of a comprehensive database about their features and its limitation to a surveyed subset lead us to adopt data-driven techniques to extend our knowledge to the near-city-scale. Neural networks and random forests are applied to identify the buildings' number of floors and construction periods' dependencies on a set of shape features: area, perimeter, and height along with the annual electricity consumption, relying a surveyed data in the city of Beirut. The predicted results are then compared with established scaling laws of urban forms, which constitutes a further consistency check and validation of our workflow., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF