1. Risk Zoning of Permafrost Thaw Settlement in the Qinghai–Tibet Engineering Corridor.
- Author
-
Liu, Zhiyun, Zhu, Yu, Chen, Jianbing, Cui, Fuqing, Zhu, Wu, Liu, Jine, and Yu, Hui
- Subjects
- *
PERMAFROST , *RADIAL basis functions , *THAWING , *TUNDRAS , *EARTH temperature , *WATERSHEDS - Abstract
The Qinghai–Tibet Plateau is the highest and largest permafrost area in the middle and low latitudes of China. In this region, permafrost thaw settlement is the main form of expressway subgrade disaster. Therefore, the quantitative analysis and regionalization study of permafrost thaw settlement deformation are of great significance for expressway construction and maintenance in the Qinghai–Tibet region. This paper establishes a thaw settlement prediction model using the thaw settlement coefficient and thaw depth. The thaw depth was predicted by the mean annual ground temperatures and active-layer thicknesses using the Radial Basis Function (RBF) neural network model, and the thaw settlement coefficient was determined according to the type of ice content. Further, the distribution characteristics of thaw settlement risk of the permafrost subgrade in the study region were mapped and analyzed. The results showed that the thaw settlement risk was able to be divided into four risk levels, namely significant risk, high risk, medium risk and low risk levels, with the areas of these four risk levels covering 3868.67 km2, 1594.21 km2, 2456.10 km2 and 558.78 km2, respectively, of the total study region. The significant risk level had the highest proportion among all the risk levels and was mainly distributed across the Chumar River Basin, Beiluhe River Basin and Gaerqu River Basin regions. Moreover, ice content was found to be the main factor affecting thaw settlement, with thaw settlement found to increase as the ice content increased. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF