1. Whether the updates of dynamical processes can improve the performance of BCC‐CSM model to reproduce the long‐range correlation of the daily temperature?
- Author
-
He, Wenping, Zhao, Shanshan, Wan, Shiquan, and Jiang, Yundi
- Subjects
- *
ATMOSPHERIC models , *TEMPERATURE , *SURFACE temperature - Abstract
Many studies have shown that the climate system has the long‐range correlation (LRC) characteristics, which provide a good test bed for evaluating the performance of climate models. In this study, the LRC characteristics of the observed surface daily temperature data in China is first analysed by detrended fluctuation analysis. It is found that the daily temperature records, including daily mean temperature (Tmean), daily maximum temperature (Tmax), and daily minimum temperature (Tmin), all exhibit LRC characteristics with scaling exponents more than 0.6 in most of China. Then, the performances of two different versions for the Beijing Climate Center Climate System Model (BCC‐CSM), namely, BCC‐CSM1.1m in CMIP5 and BCC‐CMS2‐MR in CMIP6, are quantitatively evaluated by comparing the differences of the LRC characteristics between the observations and the simulations. The results indicate that BCC‐CSM2‐MR performs better than BCC‐CSM1.1(m) in western Northwest China, most of south of the middle and lower reaches of Yangtze River, North China, central Inner Mongolia for the daily Tmean and Tmax. As far as the daily Tmin is concerned, BCC‐CSM1.1(m) performs better than BCC‐CSM2‐MR in western South China and southern Xinjiang, and the performance of BCC‐CSM2‐MR in CMIP6 has not been significant improved. Compared with BCC‐CSM1.1(m), BCC‐CSM2‐MR cannot significantly improve the simulations for the LRC characteristics of the three daily temperature variables in central and eastern Qinghai‐Tibet plateau, and the areas of between lower reaches of Yellow River and Yangtze River. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF