1. A nationwide survey of 20 legacy brominated flame retardants in indoor dust from China: continuing occurrence, national distribution, and implication for human exposure.
- Author
-
Li H, Liu Y, Lan Y, Zhao Y, Lu A, Li C, Lei R, Xue J, and Liu W
- Subjects
- Adult, China, Dust analysis, Environmental Exposure analysis, Environmental Monitoring, Halogenated Diphenyl Ethers analysis, Humans, Infant, Surveys and Questionnaires, Air Pollution, Indoor analysis, Flame Retardants analysis
- Abstract
Despite the restrictions on polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDDs), these chemicals are still ubiquitous environmental pollutants. In this study, we measured the concentrations and profiles of 17 PBDE congeners and 3 HBCDD isomers in indoor dust samples collected from 23 provinces and cities across China. The summed concentrations of PBDEs (Σ
17 PBDEs) ranged from 4.19 to 817 ng/g, with an average of 171 ± 184 ng/g. BDE-209 was the most abundant congener. The concentrations of HBCDDs ranged from 6.65 to 1335 ng/g, with an average of 236 ± 324 ng/g. Unlike commercial HBCDD formulations, α-HBCDD was the predominant isomer in the indoor dust samples analyzed. Geographical distributions showed that the concentrations of PBDEs and HBCDDs varied significantly among different regions. Higher PBDE and HBCDD levels were observed in samples from eastern coastal and economically developed regions. Further, we estimated the daily intakes of PBDEs and HBCDDs through the routes of dust ingestion and dust dermal absorption for different age groups. Dust dermal absorption is an unneglectable exposure pathway to PBDEs and HBCDs for the Chinese population. Among the age groups, infants had the highest exposure via dust dermal absorption, and toddlers had the highest exposure via dust ingestion. Compared with the threshold values, the exposure doses of PBDEs and HBCDDs are unlikely to pose significant health concerns for both infants and adults in China. This is the first national survey of PBDEs and HBCDDs in indoor dust samples across China after the restriction., (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)- Published
- 2022
- Full Text
- View/download PDF