1. High-resolution Sr-isotopic evolution of Black Sea water during the Holocene: Implications for reconnection with the global ocean.
- Author
-
Ankindinova, O., Hiscott, R.N., Aksu, A.E., and Grimes, V.
- Subjects
- *
ISOTOPES , *INDUCTIVELY coupled plasma mass spectrometry , *SHORELINES , *SEDIMENTS - Abstract
Abstract The 10 m-thick Holocene succession at core site M02-45 (41°41.17′N, 28°19.08′E, −69 m water depth) has key advantages for investigation of the Sr-isotopic evolution of the Holocene Black Sea. Earlier studies have focussed on thinner successions and coquinas. At the M02-45 site (augmented by nearby core M05-03P), 87Sr/86Sr determinations on mollusc shells extracted at mostly 10–20 cm depth increments provide a temporal resolution mostly <200 years in sediment older than ~5500 cal yr BP, and ~20–25 years for the early Holocene reconnection between the Black Sea (formerly the Neoeuxine Lake) and the global ocean. Isotopic measurements are in stratigraphic order, so temporal trends are unambiguous. Measurements were made using a Neptune multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS) and have 1σ uncertainties of ~ ±0.000015. There are four stages of 87Sr/86Sr increase and salination associated with the reconnection. From 12,145–9580 cal yr BP (stage A), before first Mediterranean inflow, the Sr-isotopic ratio varied from 0.708847–0.708881. Modelling suggests that the Sr concentration in the Neoeuxine Lake might have been several times higher than modern river values because of evaporative concentration. For ~100 years immediately before reconnection (9580–9490 cal yr BP, stage B), 87Sr/86Sr values dropped to their lowest levels: 0.708841–0.708843. Abruptly (in geological terms), 87Sr/86Sr then began to climb starting 9465–9490 cal yr BP and reached a quasi-steady-state 'plateau' with ratios ~0.708965 by ~9380 cal yr BP (stage C). The sharp 87Sr/86Sr increase marks the first significant intrusion of saline water into a previously isolated Neoeuxine Lake. The quasi-steady-state condition lasted 350–400 years. Subsequently, starting ~8985 cal yr BP and proceeding to the present day, there was a step-wise rise of 87Sr/86Sr to modern levels (stage D), during which a salinity threshold was passed that allowed widespread replacement of brackish-water faunas by Mediterranean species. Modelling suggests that the lake/sea level likely did not, and could not, rise from −120 m to −30 m between 9490 and 9380 cal yr BP unless (a) the Sr concentration in the pre-reconnection Neoeuxine Lake was 3–4 times higher than today, or (b) the water column was strongly stratified during first entry of saline water. The second alternative is very unlikely because of seasonal vertical mixing (downwelling/upwelling) in what was then a rather homogeneous temperate lake. Catastrophic flooding of a lowstand lake would require an average discharge through the Strait of Bosphorus of ~9500 m3 s−1, whereas saline entry of Mediterranean water as an underflow into an already high lake could reproduce the first stage of 87Sr/86Sr increase with an average discharge as low as ~2200 m3 s−1. Because the M02-45 site is ~50 m above the late Pleistocene lowstand shoreline and contains sub-wavebase sediments with 87Sr/86Sr values that record the first entry of saline water into the Neoeuxine Lake, the surface of the lake must have been significantly higher than −70 m at the time of the reconnection. Two prominent 'plateaux' which punctuate the long-term 87Sr/86Sr increase are attributed to decadal to centennial periods of increased discharge from European rivers, creating a positive hydrological balance and effectively blocking or seriously impeding saline-water advance up the Strait of Bosphorus toward the Black Sea. Highlights • Holocene reconnection of Black Sea consistent with elevated precursor lake, not flood. • 87Sr/86Sr profile from 10 m-thick intact succession clarifies salination history. • Modelling first 100–400 years shows stalling of seawater input after initial pulse. • Neoeuxine Lake was brackish, not fresh, with [Sr] likely greater than river water. • Start/stop salination accords well with faunal turnovers and sapropel (Unit II) onset. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF