1. Contrasting wet deposition composition between three diverse islands and coastal North American sites.
- Author
-
Ma, Lin, Dadashazar, Hossein, Hilario, Miguel Ricardo A., Cambaliza, Maria Obiminda, Lorenzo, Genevieve Rose, Simpas, James Bernard, Nguyen, Phu, and Sorooshian, Armin
- Subjects
- *
PRECIPITATION (Chemistry) , *BIOMASS burning , *PRECIPITATION variability , *TROPOSPHERIC ozone , *SEA salt , *ATMOSPHERIC circulation - Abstract
This study examined spatial variations of precipitation accumulation and chemistry for six sites located on the West and East Coasts of the U.S., and one site each on the islands of Hawaii, Bermuda, and Luzon of the Philippines (specifically Manila). The nine coastal sites ranged widely in both mean annual precipitation accumulation, ranging from 40 cm (Mauna Loa, Hawaii) to 275 cm (Washington), and in terms of monthly profiles. The three island sites represented the extremes of differences in terms of chemical profiles, with Bermuda having the highest overall ion concentrations driven mainly by sea salt, Hawaii having the highest SO 4 2− mass fractions due to the nearby influence of volcanic SO 2 emissions and mid-tropospheric transport of anthropogenic pollution, and Manila exhibiting the highest concentration of non-marine ions (NH 4 +, non-sea salt [nss] SO 4 2−, nss Ca2+, NO 3 −, nss K+, nss Na+, nss Mg2+) linked to anthropogenic, biomass burning, and crustal emissions. The Manila site exhibited the most variability in composition throughout the year due to shifting wind directions and having diverse regional and local pollutant sources. In contrast to the three island sites, the North American continental sites exhibited less variability in precipitation composition with sea salt being the most abundant constituent followed by some combination of SO 4 2−, NO 3 −, and NH 4 +. The mean-annual pH values ranged from 4.88 (South Carolina) to 5.40 (central California) with NH 4 + exhibiting the highest neutralization factors for all sites except Bermuda where dust tracer species (nss Ca2+) exhibited enhanced values. The results of this study highlight the sensitivity of wet deposition chemistry to regional considerations, elevation, time of year, and atmospheric circulations. Image 1 • Bermuda exhibited the highest ion concentrations due to sea salt. • Anthropogenic and biomass burning tracer levels were the highest at Manila. • Mauna Loa's high SO4 fraction due to mid-tropospheric transport and volcanic emissions. • North American continental sites had less monthly variability than the islands. • Ammonium had the highest neutralization capacity at all sites except Bermuda (Ca2+). [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF