1. Evaluating the environmental impacts of an urban wetland park based on emergy accounting and life cycle assessment: A case study in Beijing
- Author
-
Duan, N., Liu, X.D., Dai, J., Lin, C., Xia, X.H., Gao, R.Y., Wang, Y., Chen, S.Q., Yang, J., and Qi, J.
- Subjects
- *
ENVIRONMENTAL impact analysis , *LIFE cycle costing , *WETLANDS , *ECOSYSTEM services , *EUTROPHICATION , *SUSTAINABILITY - Abstract
In this paper, emergy accounting (EA) and life cycle assessment (LCA) methods are employed to investigate a typical urban wetland park, the Green Lake Urban Wetland Park (GLUWP) of Beijing, in terms of its environmental and capital inputs, ecosystem services and organic matter yields, environmental support, and sustainability. The LCA method is also used to obtain a quantitative estimation of the environmental impact of discharges during the entire life cycle of the GLUWP. Various emergy-based indices, such as emergy yield ratio (EYR), environmental load ratio (ELR), emergy sustainability index (ESI), net economic benefit (Np), and environmental impacts of process-based LCA, including global warming potential (GWP), eutrophication (EU), nonrenewable resource depletion (RU), energy consumption (EN), acidification potential (AP), photochemical oxidant creation potential (POCP), particulate matter (PM) and wastes (W), are calculated. The results show that the GLUWP has higher proportions of renewable resource input, less pressure on the environment, more environmental support and better ecological and economic benefits, which can be considered as an environment-friendly and long-term sustainable ecological practice, compared with another constructed wetland in Beijing. Meanwhile, the dominant environmental impact is induced by POCP with the construction phase contributing the most on the entire life cycle. It is expected that increasing green area, extensively using environment-friendly materials, optimizing construction techniques and reducing power consumption can promote the sustainability of the GLUWP. [Copyright &y& Elsevier]
- Published
- 2011
- Full Text
- View/download PDF