1. Diversification of the mygalomorph spider genus Aname (Araneae: Anamidae) across the Australian arid zone: Tracing the evolution and biogeography of a continent-wide radiation.
- Author
-
Rix MG, Wilson JD, Huey JA, Hillyer MJ, Gruber K, and Harvey MS
- Subjects
- Animals, Australia, DNA, Mitochondrial genetics, Desert Climate, Phylogeny, Phylogeography, Spiders classification, Spiders genetics
- Abstract
The assembly of the Australian arid zone biota has long fascinated biogeographers. Covering over two-thirds of the continent, Australia's vast arid zone biome is home to a distinctive fauna and flora, including numerous lineages which have diversified since the Eocene. Tracing the origins and speciation history of these arid zone taxa has been an ongoing endeavour since the advent of molecular phylogenetics, and an increasing number of studies on invertebrate animals are beginning to complement a rich history of research on vertebrate and plant taxa. In this study, we apply continent-wide genetic sampling and one of the largest phylogenetic data matrices yet assembled for a genus of Australian spiders, to reconstruct the phylogeny and biogeographic history of the open-holed trapdoor spider genus Aname L. Koch, 1873. This highly diverse lineage of Australian mygalomorph spiders has a distribution covering the majority of Australia west of the Great Dividing Range, but apparently excluding the high rainfall zones of eastern Australia and Tasmania. Original and legacy sequences were obtained for three mtDNA and four nuDNA markers from 174 taxa in seven genera, including 150 Aname specimen terminals belonging to 102 species-level operational taxonomic units, sampled from 32 bioregions across Australia. Reconstruction of the phylogeny and biogeographic history of Aname revealed three radiations (Tropical, Temperate-Eastern and Continental), which could be further broken into eight major inclusive clades. Ancestral area reconstruction revealed the Pilbara, Monsoon Tropics and Mid-West to be important ancestral areas for the genus Aname and its closest relatives, with the origin of Aname itself inferred in the Pilbara bioregion. From these origins in the arid north-west of Australia, our study found evidence for a series of subsequent biome transitions in separate lineages, with at least eight tertiary incursions back into the arid zone from more mesic tropical, temperate or eastern biomes, and only two major clades which experienced widespread (primary) in situ diversification within the arid zone. Based on our phylogenetic results, and results from independent legacy divergence dating studies, we further reveal the importance of climate-driven biotic change in the Miocene and Pliocene in shaping the distribution and composition of the Australian arid zone biota, and the value of continent-wide studies in revealing potentially complex patterns of arid zone diversification in dispersal-limited invertebrate taxa., (Copyright © 2021 Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF