1. Urban expansion in Auckland, New Zealand: a GIS simulation via an intelligent self-adapting multiscale agent-based model.
- Author
-
Xu, Tingting, Gao, Jay, Coco, Giovanni, and Wang, Shuliang
- Subjects
MULTISCALE modeling ,ARTIFICIAL neural networks ,LAND use planning ,CELLULAR automata ,PHYSICAL environment - Abstract
Abstract: When modelling urban expansion dynamics, cellular automata models focus mostly on the physical environments and cell neighbours, but ignore the 'human' aspect of the allocation of urban expansion cells. This limitation is overcome here using an intelligent self-adapting multiscale agent-based model. To simulate the urban expansion of Auckland, New Zealand, a total of 15 urban expansion drivers/constraints were considered over two periods (2000–2005, 2005–2010). The modelling takes into consideration both a macro-scale agent (government) and micro-scale agents (residents of three income levels), and their multi-level interactions. In order to achieve reliable simulation results, ABM was coupled with an artificial neural network to reveal the learning process and heterogeneity of the multi-sub-residential agents. The ANN-ABM accurately simulated the urban expansion of Auckland at both the global and local scales, with kappa simulation value at 0.48 and 0.55, respectively. The validated simulation result shows that the intelligent and self-adapting ANN-ABM approach is more accurate than an ABM with a general type of agent model (kappa simulation = 0.42) at the global scale, and more accurate than an ANN-based CA model (kappa simulation = 0.47) at the local scale. Simulation inaccuracy stems mostly from the outdated master land use plan. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF