1. Glycan heterogeneity as a cause of the persistent fraction in HIV-1 neutralization.
- Author
-
Ringe, Rajesh P., Colin, Philippe, Ozorowski, Gabriel, Allen, Joel D., Yasmeen, Anila, Seabright, Gemma E., Lee, Jeong Hyun, Antanasijevic, Aleksandar, Rantalainen, Kimmo, Ketas, Thomas, Moore, John P., Ward, Andrew B., Crispin, Max, and Klasse, P. J.
- Subjects
- *
GLYCANS , *HIV , *SURFACE plasmon resonance , *VIRAL antibodies , *PROTEIN structure , *HETEROGENEITY - Abstract
Neutralizing antibodies (NAbs) to multiple epitopes on the HIV-1-envelope glycoprotein (Env) have been isolated from infected persons. The potency of NAbs is measured more often than the size of the persistent fraction of infectivity at maximum neutralization, which may also influence preventive efficacy of active or passive immunization and the therapeutic outcome of the latter. Many NAbs neutralize HIV-1 CZA97.012, a clone of a Clade-C isolate, to ~100%. But here NAb PGT151, directed to a fusion-peptide epitope, left a persistent fraction of 15%. NAb PGT145, ligating the Env-trimer apex, left no detectable persistent fraction. The divergence in persistent fractions was further analyzed by depletion of pseudoviral populations of the most PGT151- and PGT145-reactive virions. Thereby, neutralization by the non-depleting NAb increased, whereas neutralization by the depleting NAb decreased. Furthermore, depletion by PGT151 increased sensitivity to autologous neutralization by sera from rabbits immunized with soluble native-like CZA97.012 trimer: substantial persistent fractions were reduced. NAbs in these sera target epitopes comprising residue D411 at the V4-β19 transition in a defect of the glycan shield on CZA97.012 Env. NAb binding to affinity-fractionated soluble native-like CZA97.012 trimer differed commensurately with neutralization in analyses by ELISA and surface plasmon resonance. Glycan differences between PGT151- and PGT145-purified trimer fractions were then demonstrated by mass spectrometry, providing one explanation for the differential antigenicity. These differences were interpreted in relation to a new structure at 3.4-Å resolution of the soluble CZA97.012 trimer determined by cryo-electron microscopy. The trimer adopted a closed conformation, refuting apex opening as the cause of reduced PGT145 binding to the PGT151-purified form. The evidence suggests that differences in binding and neutralization after trimer purification or pseudovirus depletion with PGT145 or PGT151 are caused by variation in glycosylation, and that some glycan variants affect antigenicity through direct effects on antibody contacts, whereas others act allosterically. Author summary: Neutralizing antibodies block the entry of HIV-1 into cells and protect against HIV-1 infection in animal models. Therefore, vaccination aims to elicit antibodies that potently neutralize most HIV-1 variants. Such antibodies suppress virus levels when given to HIV-1-infected patients. Their potency is often measured as the concentration that gives 50% or 80% neutralization. But higher degrees of neutralization are needed to protect an organism from infection. And for some antibodies a ceiling is reached, so that even with increasing concentration a constant fraction of infectious virus persists. We studied the carbohydrate moieties on the envelope glycoprotein, which is the sole target for neutralizing antibodies, of one HIV-1 isolate of the most widespread subtype, Clade C, prevalent in Africa and Asia. We show how differences in carbohydrates can contribute to persistent infectivity, because distinct carbohydrates fit different antibodies. With a new three-dimensional structure of the entry-mediating protein from the Clade-C isolate, we illustrate that some carbohydrate differences occur exactly where the antibodies bind, whereas others are located elsewhere and can act indirectly. When we combined two neutralizing antibodies, the persistent infectivity shrank. Our results reinforce the need for multiple specificities of neutralizing antibodies in prevention and therapy. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF