1. Assessment of physico-chemical parameters of surface waters of a tropical brackish water lake in South Asia.
- Author
-
Nirmala K, Senthil Kumar P, Ambujam NK, and Srinivasalu S
- Subjects
- Asia, Chlorophyll A analysis, Environmental Monitoring, Nitrogen analysis, Phosphorus analysis, Saline Waters, Seasons, Lakes analysis, Water Pollutants, Chemical analysis
- Abstract
Brackish lake systems and estuaries are unique aquatic systems that support diversified life forms and strongly influence a region's economy. Major chemical water quality parameters of India's second-largest brackish water lake, Pulicat were assessed. Physico-chemical parameters like pH, temperature, suspended solid concentrates, total dissolved solids, salinity, nitrogenous nutrients, phosphate, silicate, and chlorophyll a were analysed. The results obtained for different parameters were compared and interpreted with statistical software SPSS version 20 and images were plotted using the Arc GIS spatial analyst tool. During the summer months, the nitrogen to phosphorus ratio ranges from a minimum of 1.96 to a maximum of 16.64 (9.55 ± 4.01) while it ranges from a minimum of 7.98 to a maximum of 15.52 (12.47 ± 2) during the pre-monsoon. In the monsoon season, the nitrogen to phosphorus ratio of surface water suggests a range from a minimum of 8.64 to a maximum of 17.58 (13.87 ± 2.14). During the post-monsoon season, the nitrogen to phosphorus ratio ranges from 4.98 to 17.34 (11.77 ± 3.68). The average nitrogen to phosphorus ratios were 9.6, 12.5, 13.9 and 11.8 in summer, pre-monsoon, monsoon, and post-monsoon respectively. The nitrogen to phosphorus ratio was lower than the Redfield ratio for all the seasons. The average concentration of chlorophyll a was 14.9, 13.4, 12.8 and 11.8 in summer, pre-monsoon, monsoon, and post-monsoon respectively. As per the Pearson Correlation Coefficient, there was no significant correlation among nitrogen, phosphorus, and chlorophyll a. This suggests the influence of suspended solid concentrates, and nitrogen and phosphorus flux in the sediment-water interface might be interfering with the nutrient cycles and primary productivity., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF